Detecting social biases using mental state inference.

心理学 推论 社会心理学 精神状态 社会认知 认知心理学 感知 人工智能 计算机科学 神经科学
作者
Mika Asaba,Isaac Davis,Julia A. Leonard,Julian Jara‐Ettinger
出处
期刊:Journal of Personality and Social Psychology [American Psychological Association]
标识
DOI:10.1037/pspa0000451
摘要

Social biases are prevalent in everyday social interactions, but they are often expressed in subtle ways that can make them difficult to detect. Yet, intuitively, people often recognize when they are the subject of a bias, even when those biases are not explicitly communicated (e.g., sexist or racist slurs). While much research has focused on the negative consequences of social biases, less is known about the cognitive mechanisms that allow people to explicitly detect them in the first place. In this article, we propose an account of social bias detection grounded in mental state representations. We propose that people infer biases by detecting a gap between expected unbiased behavior and observed behavior, which in turn reveals the underlying biases influencing other people's beliefs. We present a formal computational model of this account and, across four preregistered experiments (n = 876 total), show that this model captures participants' inferences about an agent's prior beliefs (Experiment 1), general social biases (Experiment 2) across various real-world contexts (Experiments 3a-3c), and even specific racial and gender biases (Experiment 4). We compare this model with alternative models that differ in their assumptions about whether and how a biased agent updates their beliefs about an individual. Participants' judgments were best explained as the process of inferring an agent's prior beliefs before updating them based on available evidence about the individual. These findings highlight the role of mental state reasoning in bias detection and broaden our understanding of the human capacity to detect and reason about social biases. (PsycInfo Database Record (c) 2025 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MG_XSJ完成签到,获得积分10
刚刚
Lucas应助任斯采纳,获得30
1秒前
wind发布了新的文献求助10
1秒前
AA完成签到,获得积分10
2秒前
大气成风发布了新的文献求助10
2秒前
无情科研狗完成签到,获得积分10
2秒前
read发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
乐乐乐乐乐乐应助呆呆采纳,获得10
4秒前
DXJ发布了新的文献求助10
4秒前
kong发布了新的文献求助10
5秒前
jason完成签到,获得积分10
5秒前
6秒前
6秒前
7秒前
科研通AI2S应助桂花乌龙采纳,获得10
7秒前
8秒前
修仙中应助Bennyz采纳,获得10
8秒前
尤苏福发布了新的文献求助10
8秒前
张雨兴发布了新的文献求助10
8秒前
Seedless发布了新的文献求助10
8秒前
搜集达人应助yan采纳,获得10
9秒前
兴奋大船发布了新的文献求助30
9秒前
英吉利25发布了新的文献求助10
10秒前
缓慢的中蓝完成签到,获得积分10
11秒前
黄橙子发布了新的文献求助10
11秒前
11秒前
loen完成签到,获得积分10
11秒前
11秒前
12秒前
13秒前
大气成风完成签到,获得积分10
13秒前
hhh完成签到,获得积分10
13秒前
怕黑雨梅发布了新的文献求助10
14秒前
mitty完成签到 ,获得积分10
14秒前
爆米花应助hahaha123213123采纳,获得10
14秒前
扶手完成签到,获得积分10
15秒前
看风景的小熊完成签到,获得积分10
15秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 740
镇江南郊八公洞林区鸟类生态位研究 500
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
Corpus Linguistics for Language Learning Research 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4139320
求助须知:如何正确求助?哪些是违规求助? 3676275
关于积分的说明 11620352
捐赠科研通 3370382
什么是DOI,文献DOI怎么找? 1851340
邀请新用户注册赠送积分活动 914489
科研通“疑难数据库(出版商)”最低求助积分说明 829266