Detecting social biases using mental state inference.

心理学 推论 社会心理学 精神状态 社会认知 认知心理学 感知 人工智能 计算机科学 神经科学
作者
Mika Asaba,Isaac Davis,Julia Leonard,Julian Jara‐Ettinger
出处
期刊:Journal of Personality and Social Psychology [American Psychological Association]
标识
DOI:10.1037/pspa0000451
摘要

Social biases are prevalent in everyday social interactions, but they are often expressed in subtle ways that can make them difficult to detect. Yet, intuitively, people often recognize when they are the subject of a bias, even when those biases are not explicitly communicated (e.g., sexist or racist slurs). While much research has focused on the negative consequences of social biases, less is known about the cognitive mechanisms that allow people to explicitly detect them in the first place. In this article, we propose an account of social bias detection grounded in mental state representations. We propose that people infer biases by detecting a gap between expected unbiased behavior and observed behavior, which in turn reveals the underlying biases influencing other people's beliefs. We present a formal computational model of this account and, across four preregistered experiments (n = 876 total), show that this model captures participants' inferences about an agent's prior beliefs (Experiment 1), general social biases (Experiment 2) across various real-world contexts (Experiments 3a-3c), and even specific racial and gender biases (Experiment 4). We compare this model with alternative models that differ in their assumptions about whether and how a biased agent updates their beliefs about an individual. Participants' judgments were best explained as the process of inferring an agent's prior beliefs before updating them based on available evidence about the individual. These findings highlight the role of mental state reasoning in bias detection and broaden our understanding of the human capacity to detect and reason about social biases. (PsycInfo Database Record (c) 2025 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助咕咕咕采纳,获得10
刚刚
浮游应助小姜采纳,获得10
刚刚
Orange应助咕咕咕采纳,获得10
刚刚
花花完成签到,获得积分10
2秒前
2秒前
未来完成签到,获得积分10
2秒前
宅了五百年完成签到,获得积分10
4秒前
4秒前
Freeasy完成签到 ,获得积分10
5秒前
花花发布了新的文献求助10
5秒前
Potaku完成签到,获得积分10
5秒前
6秒前
8秒前
清水胖子发布了新的文献求助10
8秒前
脑洞疼应助小闵采纳,获得10
10秒前
Bethany0215完成签到,获得积分10
11秒前
muzi发布了新的文献求助10
11秒前
852应助ERIS采纳,获得30
12秒前
13秒前
安详的曲奇完成签到,获得积分10
13秒前
冲浪男孩发布了新的文献求助10
14秒前
15秒前
18秒前
SciGPT应助熊升树采纳,获得10
18秒前
辛勤的碧萱完成签到,获得积分10
18秒前
可爱的函函应助Cssss采纳,获得10
19秒前
英姑应助大点搞采纳,获得10
19秒前
爱笑的无心完成签到 ,获得积分10
19秒前
打打应助清水胖子采纳,获得10
20秒前
20秒前
xia完成签到,获得积分10
22秒前
笛卡尔发布了新的文献求助10
23秒前
23秒前
结实的皮皮虾完成签到,获得积分10
24秒前
CipherSage应助ccalvintan采纳,获得20
24秒前
Wei_Li发布了新的文献求助10
26秒前
27秒前
小破网完成签到 ,获得积分0
28秒前
Violet完成签到 ,获得积分10
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5271588
求助须知:如何正确求助?哪些是违规求助? 4429244
关于积分的说明 13787991
捐赠科研通 4307583
什么是DOI,文献DOI怎么找? 2363636
邀请新用户注册赠送积分活动 1359308
关于科研通互助平台的介绍 1322221