已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Construction and application of a nomogram model for predicting postoperative cerebral edema in meningiomas based on radiomics and clinical features

医学 列线图 水肿 脑水肿 接收机工作特性 入射(几何) 随机对照试验 临床试验 外科 放射科 内科学 光学 物理
作者
Jiajun Qin,Chao Li,Jin Fu,Xianzhen Chen,Ting Hua
出处
期刊:Acta Radiologica [SAGE]
卷期号:66 (10): 1036-1046
标识
DOI:10.1177/02841851251340596
摘要

Background There is a lack of unified standard and effective methods for the diagnosis and treatment of postoperative cerebral edema. Purpose To test the effectiveness of a predictive model in the diagnostic and treatment strategies for postoperative cerebral edema in patients with a meningioma. Material and Methods A prediction model was constructed based on the data of 300 patients with a meningioma. The predictive model was used to evaluate the diagnosis and treatment effectiveness among another 100 patients. The 100 patients were randomly divided into a control group (n = 50) and an intervention group (n = 50). The control group received conventional diagnosis and treatment, and the intervention group was evaluated, diagnosed, and treated under the instruction of the prediction model. Results The calibration curves, decision curves, and receiver operating characteristic curves showed that the model had good calibration and good utility performance. A significant and effective rate of cerebral edema treatment was higher in the intervention group compared to the control group. In addition, a shorter time to cerebral edema regression, shorter hospital stay, lower cost, and lower incidence of postoperative complications characterized the intervention group compared to the control group ( P <0.05). Conclusion The prediction model based on radiomics and clinical features has a high classification performance and clinical utility. The diagnostic and therapeutic decision under this model can improve the therapeutic effect and outcome of patients with postoperative cerebral edema and reduce the hospitalization time and cost.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿楚发布了新的文献求助10
1秒前
wunai012321发布了新的文献求助10
1秒前
隐形曼青应助健壮的夕阳采纳,获得10
1秒前
yolo3o完成签到,获得积分10
2秒前
obaica完成签到,获得积分10
2秒前
3秒前
伶俐向梦发布了新的文献求助10
4秒前
淡淡土豆应助yao啦啦采纳,获得10
5秒前
8秒前
汉堡包应助星期一采纳,获得10
8秒前
持卿应助小王采纳,获得10
8秒前
9秒前
zhangzhaoxin发布了新的文献求助10
10秒前
笨笨念文完成签到 ,获得积分10
11秒前
11秒前
Milktea123完成签到,获得积分10
11秒前
12秒前
英姑应助季文婷采纳,获得10
12秒前
美好谷芹发布了新的文献求助10
13秒前
大个应助酷炫的雪珊采纳,获得10
13秒前
14秒前
15秒前
zhangyk发布了新的文献求助10
17秒前
科研通AI2S应助凡一采纳,获得10
18秒前
18秒前
不觉完成签到 ,获得积分10
19秒前
FEMTO完成签到 ,获得积分10
19秒前
绵羊发布了新的文献求助10
20秒前
21秒前
21秒前
机灵千萍完成签到,获得积分10
21秒前
FJ发布了新的文献求助10
21秒前
LALA发布了新的文献求助10
23秒前
可爱的函函应助阿俊1212采纳,获得10
23秒前
季文婷发布了新的文献求助10
24秒前
zhangyk完成签到,获得积分10
26秒前
浮游应助科研通管家采纳,获得10
30秒前
Akim应助科研通管家采纳,获得10
30秒前
酷波er应助科研通管家采纳,获得10
30秒前
完美世界应助科研通管家采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5522001
求助须知:如何正确求助?哪些是违规求助? 4613204
关于积分的说明 14537757
捐赠科研通 4550874
什么是DOI,文献DOI怎么找? 2493912
邀请新用户注册赠送积分活动 1474951
关于科研通互助平台的介绍 1446330