An Analysis of the Efficacy of Deep Learning–Based Pectoralis Muscle Segmentation in Chest CT for Sarcopenia Diagnosis

肌萎缩 分割 胸肌 医学 胸大肌 放射科 人工智能 计算机科学 内科学 解剖
作者
Joo Chan Choi,Young Jae Kim,Kwang Gi Kim,Eun Young Kim
标识
DOI:10.1007/s10278-025-01443-4
摘要

Sarcopenia is the loss of skeletal muscle function and mass and is a poor prognostic factor. This condition is typically diagnosed by measuring skeletal muscle mass at the L3 level. Chest computed tomography (CT) scans do not include the L3 level. We aimed to determine if these scans can be used to diagnose sarcopenia and thus guide patient management and treatment decisions. This study compared the ResNet-UNet, Recurrent Residual UNet, and UNet3 + models for segmenting and measuring the pectoralis muscle area in chest CT images. A total of 4932 chest CT images were collected from 1644 patients, and additional abdominal CT data were collected from 294 patients. The performance of the models was evaluated using the dice similarity coefficient (DSC), accuracy, sensitivity, and specificity. Furthermore, the correlation between the segmented pectoralis and L3 muscle areas was compared using linear regression analysis. All three models demonstrated a high segmentation performance, with the UNet3 + model achieving the best performance (DSC 0.95 ± 0.03). Pearson correlation coefficient between the pectoralis and L3 muscle areas showed a significant positive correlation (r = 0.65). The correlation coefficient between the transformed pectoralis and L3 muscle areas showed a stronger positive correlation in both univariate analysis using only muscle area (r = 0.74) and multivariate analysis considering sex, weight, age, and muscle area (r = 0.83). Segmentation of the pectoralis muscle area using artificial intelligence (AI) on chest CT was highly accurate, and the measured values showed a strong correlation with the L3 muscle area. Chest CT using AI technology could play a significant role in the diagnosis of sarcopenia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李向阳完成签到 ,获得积分10
刚刚
1秒前
Nan发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
2秒前
3秒前
QQWQEQRQ完成签到,获得积分10
4秒前
又欠发布了新的文献求助10
5秒前
@斤斤计较发布了新的文献求助10
5秒前
dog完成签到,获得积分10
5秒前
知北游完成签到,获得积分10
5秒前
6秒前
hhh发布了新的文献求助10
6秒前
vv发布了新的文献求助10
6秒前
浮游应助无辜日记本采纳,获得10
6秒前
6秒前
8秒前
万能图书馆应助又欠采纳,获得10
9秒前
诗酒趁年华完成签到,获得积分20
10秒前
无花果应助失眠的小熊猫采纳,获得10
12秒前
12秒前
12秒前
vv完成签到,获得积分10
13秒前
wang发布了新的文献求助10
13秒前
666发布了新的文献求助10
13秒前
14秒前
noodlessss完成签到,获得积分10
14秒前
幸福的星星完成签到,获得积分10
14秒前
17秒前
17秒前
Hey完成签到 ,获得积分10
17秒前
yyyyqqq发布了新的文献求助10
19秒前
ggbond完成签到,获得积分20
20秒前
大胆的白卉完成签到 ,获得积分10
20秒前
liyuqi61148完成签到,获得积分10
21秒前
深情安青应助FFF采纳,获得10
22秒前
Jasper应助风中的尔曼采纳,获得10
23秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5381046
求助须知:如何正确求助?哪些是违规求助? 4504603
关于积分的说明 14018795
捐赠科研通 4413741
什么是DOI,文献DOI怎么找? 2424407
邀请新用户注册赠送积分活动 1417393
关于科研通互助平台的介绍 1395141