亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Efficient Privacy-Enhancing Cross-Silo Federated Learning and Applications for False Data Injection Attack Detection in Smart Grids

计算机科学 新闻聚合器 方案(数学) 推论 加密 服务器 信息隐私 同态加密 分布式计算 计算机安全 人工智能 计算机网络 数学分析 数学 操作系统
作者
Hong-Yen Tran,Jiankun Hu,Xuefei Yin,H. R. Pota
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 2538-2552 被引量:5
标识
DOI:10.1109/tifs.2023.3267892
摘要

Federated Learning is a prominent machine learning paradigm which helps tackle data privacy issues by allowing clients to store their raw data locally and transfer only their local model parameters to an aggregator server to collaboratively train a shared global model. However, federated learning is vulnerable to inference attacks from dishonest aggregators who can infer information about clients' training data from their model parameters. To deal with this issue, most of the proposed schemes in literature either require a non-colluded server setting, a trusted third-party to compute master secret keys or a secure multiparty computation protocol which is still inefficient over multiple iterations of computing an aggregation model. In this work, we propose an efficient cross-silo federated learning scheme with strong privacy preservation. By designing a double-layer encryption scheme which has no requirement to compute discrete logarithm, utilizing secret sharing only at the establishment phase and in the iterations when parties rejoin, and accelerating the computation performance via parallel computing, we achieve an efficient privacy-preserving federated learning protocol, which also allows clients to dropout and rejoin during the training process. The proposed scheme is demonstrated theoretically and empirically to provide provable privacy against an honest-but-curious aggregator server and simultaneously achieve desirable model utilities. The scheme is applied to false data injection attack detection (FDIA) in smart grids. This is a more secure cross-silo FDIA federated learning resilient to the local private data inference attacks than the existing works.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青云完成签到,获得积分10
刚刚
suda关注了科研通微信公众号
4秒前
茜zi完成签到 ,获得积分10
4秒前
Angenstern完成签到 ,获得积分10
11秒前
打打应助冰冰采纳,获得10
12秒前
gtgyh完成签到 ,获得积分10
12秒前
废羊羊完成签到 ,获得积分10
17秒前
20秒前
冰冰发布了新的文献求助10
26秒前
Willy完成签到 ,获得积分10
31秒前
科研通AI5应助冰冰采纳,获得10
32秒前
TTYYI完成签到 ,获得积分10
40秒前
44秒前
45秒前
chelsea完成签到,获得积分20
46秒前
饭粒发布了新的文献求助10
50秒前
Jeongin发布了新的文献求助30
50秒前
54秒前
blue完成签到 ,获得积分10
56秒前
咕咚完成签到,获得积分10
58秒前
冷冷完成签到 ,获得积分10
58秒前
merry6669完成签到 ,获得积分10
1分钟前
咕咚发布了新的文献求助20
1分钟前
dorsun90发布了新的文献求助20
1分钟前
凌霄完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
Vicki发布了新的文献求助10
1分钟前
么么么发布了新的文献求助10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
jyy应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
冰冰发布了新的文献求助10
1分钟前
研友_VZG7GZ应助饭粒采纳,获得10
1分钟前
科研通AI5应助柳条儿采纳,获得10
1分钟前
xx完成签到 ,获得积分10
1分钟前
思源应助小伏采纳,获得10
1分钟前
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800880
求助须知:如何正确求助?哪些是违规求助? 3346402
关于积分的说明 10329217
捐赠科研通 3062864
什么是DOI,文献DOI怎么找? 1681220
邀请新用户注册赠送积分活动 807463
科研通“疑难数据库(出版商)”最低求助积分说明 763702