Hierarchical Motion Planning and Tracking for Autonomous Vehicles Using Global Heuristic Based Potential Field and Reinforcement Learning Based Predictive Control

启发式 运动规划 强化学习 适应性 模型预测控制 计算机科学 控制工程 领域(数学) 适应(眼睛) 分级控制系统 人工智能 工程类 控制(管理) 机器人 生态学 物理 数学 光学 纯数学 生物
作者
Guodong Du,Yuan Zou,Xudong Zhang,Zirui Li,Qi Liu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (8): 8304-8323 被引量:15
标识
DOI:10.1109/tits.2023.3266195
摘要

The autonomous vehicle is widely applied in various ground operations, in which motion planning and tracking control are becoming the key technologies to achieve autonomous driving. In order to further improve the performance of motion planning and tracking control, an efficient hierarchical framework containing motion planning and tracking control for the autonomous vehicles is constructed in this paper. Firstly, the problems of planning and control are modeled and formulated for the autonomous vehicle. Then, the logical structure of the hierarchical framework is described in detail, which contains several algorithmic improvements and logical associations. The global heuristic planning based artificial potential field method is developed to generate the real-time optimal motion sequence, and the prioritized Q-learning based forward predictive control method is proposed to further optimize the effectiveness of tracking control. The hierarchical framework is evaluated and validated by the numerical simulation, virtual driving environment simulation and real-world scenario. The results show that both the motion planning layer and the tracking control layer of the hierarchical framework perform better than other previous methods. Finally, the adaptability of the proposed framework is verified by applying another driving scenario. Furthermore, the hierarchical framework also has the ability for the real-time application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
炙热雅琴发布了新的文献求助10
2秒前
keyandog发布了新的文献求助10
3秒前
科研小农民完成签到,获得积分10
5秒前
Lucas应助炙热雅琴采纳,获得10
5秒前
Vicente发布了新的文献求助50
6秒前
7秒前
7秒前
7秒前
8秒前
9秒前
青青完成签到,获得积分20
10秒前
t通应助Mp4采纳,获得10
10秒前
momochichu发布了新的文献求助10
10秒前
贾克斯发布了新的文献求助10
11秒前
丘比特应助flysky120采纳,获得10
11秒前
12秒前
夏夏发布了新的文献求助10
12秒前
boshi发布了新的文献求助10
13秒前
sensen发布了新的文献求助10
13秒前
我是老大应助meng采纳,获得10
15秒前
我是老大应助贾克斯采纳,获得10
15秒前
Yilee大壮完成签到,获得积分10
18秒前
李珂完成签到,获得积分10
19秒前
云漫山完成签到 ,获得积分10
20秒前
20秒前
科研通AI5应助萨比小乌龟采纳,获得10
21秒前
文玲发布了新的文献求助10
21秒前
Owen应助小樹采纳,获得30
21秒前
深情安青应助boshi采纳,获得10
21秒前
科研通AI5应助lgs采纳,获得10
21秒前
Zj完成签到,获得积分10
24秒前
英姑应助嗡嗡嗡采纳,获得10
25秒前
华仔应助墨尔根戴青采纳,获得10
26秒前
我是老大应助Chen采纳,获得10
26秒前
木白应助敏er好学采纳,获得10
27秒前
28秒前
SciGPT应助帐个采纳,获得10
29秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Dynamic Programming and Optimal Control 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830036
求助须知:如何正确求助?哪些是违规求助? 3372542
关于积分的说明 10473141
捐赠科研通 3092138
什么是DOI,文献DOI怎么找? 1701823
邀请新用户注册赠送积分活动 818638
科研通“疑难数据库(出版商)”最低求助积分说明 770986