Voltage-controlled magnetic anisotropy in Pt/Fe/MgO and 2D dielectric LaOBr-capped Pt/Fe/MgO heterostructures

材料科学 异质结 电介质 磁各向异性 各向异性 电压 凝聚态物理 光电子学 磁场 磁化 电气工程 光学 物理 量子力学 工程类
作者
X. T. Zhang,Shiming Yan,Wen Qiao,Ru Bai,Tiejun Zhou
出处
期刊:Applied physics reviews [American Institute of Physics]
卷期号:12 (4)
标识
DOI:10.1063/5.0281436
摘要

Low power consumption and fast response enabled by voltage control are core advantages of field-effect transistors. Similarly, in magnetoelectric random access memory (MeRAM), voltage-controlled magnetic anisotropy (VCMA) offers comparable advantages in assisting or directly inducing magnetization switching. Enhancing the VCMA coefficient is essential for fully realizing this functionality. In this work, first-principles calculations reveal that the Pt/Fe/MgO heterostructure exhibits a significant VCMA coefficient (β = −4394 fJ/V·m), which is mainly contributed by the Pt layer. It has been demonstrated that the large VCMA coefficient originates from four indispensable determinants associated with the Pt layer: (1) the strong spin–orbit coupling constant, (2) the high induced spin polarization, (3) electron accumulation/depletion on the Pt layer, and (4) the presence of Pt dz2 orbital states near the Fermi level. In consideration of practical application scenarios, Pt/Fe/MgO was further capped with an Au electrode layer and a dielectric BaTiO3 layer. However, the calculated results reveal a significant reduction in the VCMA coefficient for both structures. In contrast, introducing a 2D dielectric material, LaOBr, as a gate layer atop Pt/Fe/MgO, a comparably large VCMA coefficient (β = −4373 fJ/V·m) is obtained. This is attributed to the van der Waals nature of the LaOBr/Pt interface, which allows the Pt layer to meet the four determinants mentioned above. The insights into the factors governing the VCMA coefficient and the design of the LaOBr/Pt/Fe/MgO heterostructure provide valuable guidance for the development of next-generation, high-performance MeRAM devices with large VCMA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
扶光完成签到 ,获得积分10
1秒前
lesfilles发布了新的文献求助10
1秒前
Lin关闭了Lin文献求助
1秒前
华仔应助niuade采纳,获得10
2秒前
候鸟发布了新的文献求助10
3秒前
tfldog发布了新的文献求助10
3秒前
kkk发布了新的文献求助10
3秒前
好好发布了新的文献求助20
4秒前
尹梦成应助灯灯采纳,获得10
4秒前
5秒前
森屿海港完成签到,获得积分10
5秒前
5秒前
5秒前
Lengbo发布了新的文献求助10
5秒前
微笑跳跳糖完成签到,获得积分20
6秒前
6秒前
共享精神应助超帅凡阳采纳,获得10
7秒前
ROC完成签到,获得积分10
9秒前
房佳皓完成签到,获得积分10
9秒前
chayue完成签到 ,获得积分10
10秒前
852应助科研通管家采纳,获得10
10秒前
10秒前
Unicorn147应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
思源应助科研通管家采纳,获得30
10秒前
科目三应助科研通管家采纳,获得10
10秒前
10秒前
orixero应助科研通管家采纳,获得10
10秒前
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得80
10秒前
hitdsh应助科研通管家采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
英俊的铭应助makabakkkk采纳,获得20
10秒前
赘婿应助科研通管家采纳,获得10
10秒前
浮游应助酷酷的紫南采纳,获得10
10秒前
xxx完成签到,获得积分20
10秒前
田様应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Handbook of Industrial Inkjet Printing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264440
求助须知:如何正确求助?哪些是违规求助? 4424692
关于积分的说明 13773923
捐赠科研通 4299771
什么是DOI,文献DOI怎么找? 2359346
邀请新用户注册赠送积分活动 1355467
关于科研通互助平台的介绍 1316825