Cutting Mechanism and Experimental Study of Ultrasonic Cutting CFRP Prepreg

材料科学 复合材料 机制(生物学) 机械加工 超声波传感器 环氧树脂 有限元法 超声波加工 航空航天 模数 结构工程 声学 冶金 工程类 物理 认识论 哲学 航空航天工程
作者
Zhigang Dong,Wenhao Fan,Jiansong Sun,Shenghao Chao,Renke Kang,Yidan Wang
出处
期刊:Polymer Composites [Wiley]
标识
DOI:10.1002/pc.70288
摘要

ABSTRACT Carbon Fiber Reinforced Plastics (CFRP), with their high specific strength and modulus, are widely used in aerospace. High‐quality cutting of CFRP prepreg is the key to manufacturing CFRP components. Ultrasonic cutting, which reduces cutting forces and extends tool life, is a promising method for CFRP prepreg machining. However, the ultrasonic cutting mechanism of CFRP prepreg remains unclear; additionally, the cutting process requires further study. Moreover, the existing CFRP cutting models are difficult to apply to the modeling of CFRP prepreg. This study combines finite element modeling with experiments to investigate the ultrasonic cutting mechanism of T300 CFRP prepreg. Cohesive elements were used to simulate the viscous behavior of the uncured epoxy matrix. The effects of tool angles, ultrasonic amplitudes, and other parameters on cutting forces and surface topography were analyzed. The results show that as the ultrasonic amplitude increased from 10 to 20 μm, the principal cutting force decreased by 56.3%. As the forward inclination angle increased from 0° to 15°, the principal cutting force decreased by 26.4%. In contrast, when the cutting tool rotation angle increased from 3° to 9°, the principal cutting force increased by 43.5%, whereas the surface profile height difference decreased. An increase in the side inclination angle from 0° to 30° resulted in a 55.8% increase in the principal cutting force and a decrease in surface profile height difference. Consequently, this research provides crucial references for the theoretical optimization and practical application of ultrasonic machining of CFRP prepreg.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Haley完成签到 ,获得积分0
刚刚
1秒前
英俊的铭应助gg采纳,获得10
2秒前
球状闪电完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
嘎嘣脆发布了新的文献求助10
3秒前
3秒前
4秒前
MOf完成签到,获得积分10
4秒前
liangguangyuan完成签到 ,获得积分10
4秒前
Sakura完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
sansan发布了新的文献求助10
6秒前
a成完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
8秒前
8秒前
GPTea应助15919229415采纳,获得20
9秒前
XU发布了新的文献求助10
9秒前
71完成签到 ,获得积分10
9秒前
9秒前
9秒前
9秒前
9秒前
hdy完成签到,获得积分10
10秒前
热心的芝麻完成签到,获得积分20
10秒前
贪玩鸵鸟发布了新的文献求助10
11秒前
11秒前
lan发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
迅速的491发布了新的文献求助10
13秒前
muchuan完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295056
求助须知:如何正确求助?哪些是违规求助? 4444656
关于积分的说明 13834273
捐赠科研通 4328923
什么是DOI,文献DOI怎么找? 2376463
邀请新用户注册赠送积分活动 1371739
关于科研通互助平台的介绍 1336930