Multi-Objective ptimization of the New Energy Vehicle Supply Chain Considering Risk Losses and Carbon Emissions

作者
Yang Bao-jun,Ming Liu-Ying,Xin Zeng,XU Wei-jun
出处
期刊:International Journal of Information Technology and Decision Making [World Scientific]
卷期号:: 1-34
标识
DOI:10.1142/s0219622025501032
摘要

Compared to the traditional supply chain, regarding that of new energy vehicles (NEVs), factors such as transportation status, distribution distance, vehicle load, and whether recycled or not, are related to carbon emissions. This study investigates the multi-objective optimization problem of the supply chain of NEVs, considering the risk loss and carbon emissions. A multi-objective mixed-integer linear programming model was developed for this problem, aiming at the occurrence of transportation accidents and their accident rates under different scenarios as the quantitative factors of the risk loss, and simultaneously minimizing the risk loss, carbon emissions, and economic cost. A deep reinforcement learning-based multi-objective optimization framework was designed to effectively solve the problem. Finally, a supply chain network is constructed using Guangdong, China, as an arithmetic example to verify the effectiveness and feasibility of the model and algorithm. The experimental results show that the proposed model and algorithm can effectively solve the multi-objective optimization problem of NEV supply chain, considering risk loss and carbon emissions, and provide a reference for decision makers when making decisions on risk loss and total carbon emissions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
华仔应助优美的丹烟采纳,获得10
1秒前
1秒前
fengge完成签到,获得积分10
1秒前
我是老大应助初七123采纳,获得10
2秒前
陈陈发布了新的文献求助10
2秒前
ZSS_ism完成签到,获得积分10
3秒前
tyx完成签到,获得积分10
4秒前
跑快点发布了新的文献求助10
4秒前
4秒前
5秒前
土人完成签到,获得积分10
7秒前
caijie发布了新的文献求助10
7秒前
8秒前
李健应助陈陈采纳,获得10
8秒前
降临完成签到,获得积分20
8秒前
cwwqt完成签到,获得积分10
8秒前
年轻豪英发布了新的文献求助10
8秒前
Cindy完成签到,获得积分20
10秒前
小情绪发布了新的文献求助10
11秒前
aa发布了新的文献求助10
11秒前
风趣笑蓝完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
12秒前
12秒前
隐形曼青应助fengge采纳,获得10
13秒前
残剑月应助Tree_QD采纳,获得10
13秒前
Gabriel完成签到,获得积分20
14秒前
彭于晏应助星之采纳,获得10
14秒前
zhangzhang完成签到,获得积分10
15秒前
15秒前
Baize完成签到,获得积分10
15秒前
15秒前
水123发布了新的文献求助10
16秒前
CipherSage应助跑快点采纳,获得10
16秒前
合适的鼠标完成签到,获得积分10
17秒前
初七123发布了新的文献求助10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601299
求助须知:如何正确求助?哪些是违规求助? 4686815
关于积分的说明 14846229
捐赠科研通 4680459
什么是DOI,文献DOI怎么找? 2539291
邀请新用户注册赠送积分活动 1506167
关于科研通互助平台的介绍 1471283