计算机科学
管道(软件)
机器学习
人工智能
管道运输
班级(哲学)
资产(计算机安全)
工程类
计算机安全
环境工程
程序设计语言
作者
Bright Awuku,Ying Huang,Nita Yodo,Eric Asa
标识
DOI:10.1088/1361-6501/ad3570
摘要
Abstract Pipelines are critical arteries in the oil and gas industry and require massive capital investment to safely construct networks that transport hydrocarbons across diverse environments. However, these pipeline systems are prone to integrity failure, which results in significant economic losses and environmental damage. Accurate prediction of pipeline failure events using historical oil pipeline accident data enables asset managers to plan sufficient maintenance, rehabilitation, and repair activities to prevent catastrophic failures. However, learning the complex interdependencies between pipeline attributes and rare failure events presents several analytical challenges. This study proposes a novel machine learning (ML) framework to accurately predict pipeline failure causes on highly class-imbalanced data compiled by the United States Pipeline and Hazardous Materials Safety Administration. Natural language processing techniques were leveraged to extract informative features from unstructured text data. Furthermore, class imbalance in the dataset was addressed via oversampling and intrinsic cost-sensitive learning (CSL) strategies adapted for the multi-class case. Nine machine and deep learning architectures were benchmarked, with LightGBM demonstrating superior performance. The integration of CSL yielded an 86% F1 score and a 0.82 Cohen kappa score, significantly advancing prior research. This study leveraged a comprehensive Shapley Additive explanation analysis to interpret the predictions from the LightGBM algorithm, revealing the key factors driving failure probabilities. Leveraging sentiment analysis allowed the models to capture a richer, more multifaceted representation of the textual data. This study developed a novel CSL approach that integrates domain knowledge regarding the varying cost impacts of misclassifying different failure types into ML models. This research demonstrated an effective fusion of text insights from inspection reports with structured pipeline data that enhances model interpretability. The resulting AI modeling framework generated data-driven predictions of the causes of failure that could enable transportation agencies with actionable insights. These insights enable tailored preventative maintenance decisions to proactively mitigate emerging pipeline failures.
科研通智能强力驱动
Strongly Powered by AbleSci AI