MMSyn: A New Multimodal Deep Learning Framework for Enhanced Prediction of Synergistic Drug Combinations

药品 深度学习 计算机科学 人工智能 多层感知器 感知器 机器学习 药理学 人工神经网络 生物
作者
Yu Pang,Yihao Chen,Mujie Lin,Yanhong Zhang,Jiquan Zhang,Ling Wang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (9): 3689-3705 被引量:5
标识
DOI:10.1021/acs.jcim.4c00165
摘要

Combination therapy is a promising strategy for the successful treatment of cancer. The large number of possible combinations, however, mean that it is laborious and expensive to screen for synergistic drug combinations in vitro. Nevertheless, because of the availability of high-throughput screening data and advances in computational techniques, deep learning (DL) can be a useful tool for the prediction of synergistic drug combinations. In this study, we proposed a multimodal DL framework, MMSyn, for the prediction of synergistic drug combinations. First, features embedded in the drug molecules were extracted: structure, fingerprint, and string encoding. Then, gene expression data, DNA copy number, and pathway activity were used to describe cancer cell lines. Finally, these processed features were integrated using an attention mechanism and an interaction module and then input into a multilayer perceptron to predict drug synergy. Experimental results showed that our method outperformed five state-of-the-art DL methods and three traditional machine learning models for drug combination prediction. We verified that MMSyn achieved superior performance in stratified cross-validation settings using both the drug combination and cell line data. Moreover, we performed a set of ablation experiments to illustrate the effectiveness of each component and the efficacy of our model. In addition, our visual representation and case studies further confirmed the effectiveness of our model. All results showed that MMSyn can be used as a powerful tool for the prediction of synergistic drug combinations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MLJ完成签到 ,获得积分10
1秒前
111完成签到,获得积分10
1秒前
lh完成签到 ,获得积分10
1秒前
俞孤风完成签到,获得积分10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
aaa完成签到 ,获得积分10
3秒前
4秒前
lucky完成签到 ,获得积分10
5秒前
6秒前
yy完成签到 ,获得积分10
7秒前
james完成签到,获得积分10
7秒前
黄紫红完成签到 ,获得积分10
9秒前
Sean完成签到,获得积分10
11秒前
青青完成签到 ,获得积分10
11秒前
十九完成签到,获得积分10
12秒前
马前人发布了新的文献求助10
12秒前
行动完成签到,获得积分10
12秒前
orixero应助虚心的芹采纳,获得10
13秒前
邓博完成签到,获得积分10
14秒前
典雅浩轩完成签到,获得积分10
14秒前
星辰完成签到 ,获得积分0
16秒前
东方诩完成签到,获得积分10
16秒前
AslenK完成签到,获得积分10
17秒前
研研研完成签到,获得积分10
18秒前
yeurekar完成签到,获得积分10
20秒前
縤雨完成签到 ,获得积分10
20秒前
钱钱完成签到,获得积分10
21秒前
调皮醉波完成签到 ,获得积分10
22秒前
跳跃的迎荷完成签到 ,获得积分10
22秒前
hhhhhha完成签到,获得积分10
23秒前
muBai嘎嘎牛完成签到,获得积分10
23秒前
十八完成签到,获得积分10
24秒前
晓晓完成签到,获得积分10
24秒前
24秒前
荀煜祺完成签到,获得积分10
25秒前
王玉完成签到 ,获得积分10
25秒前
jiyixiao1完成签到,获得积分10
26秒前
勤恳易真完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5175086
求助须知:如何正确求助?哪些是违规求助? 4364428
关于积分的说明 13586706
捐赠科研通 4213528
什么是DOI,文献DOI怎么找? 2311076
邀请新用户注册赠送积分活动 1310068
关于科研通互助平台的介绍 1258103