针铁矿
鳞片岩
铁质
化学
氧化铁
结晶度
矿物
斯沃特曼矿
无机化学
有机质
铁酸盐
矿物学
结晶学
有机化学
吸附
作者
Chunmei Chen,Aaron Thompson
标识
DOI:10.1021/acs.est.7b05102
摘要
Abiotic Fe(II) oxidation by O2 commonly occurs in the presence of mineral sorbents and organic matter (OM) in soils and sediments; however, this tertiary system has rarely been studied. Therefore, we examined the impacts of mineral surfaces (goethite and γ-Al2O3) and organic matter [Suwannee River fulvic acid (SRFA)] on Fe(II) oxidation rates and the resulting Fe(III) (oxyhydr)oxides under 21 and 1% pO2 at pH 6. We tracked Fe dynamics by adding 57Fe(II) to 56Fe-labeled goethite and γ-Al2O3 and characterized the resulting solids using 57Fe Mössbauer spectroscopy. We found Fe(II) oxidation was slower at low pO2 and resulted in higher-crystallinity Fe(III) phases. Relative to oxidation of Fe(II)(aq) alone, both goethite and γ-Al2O3 surfaces increased Fe(II) oxidation rates regardless of pO2 levels, with goethite being the stronger catalyst. Goethite surfaces promoted the formation of crystalline goethite, while γ-Al2O3 favored nano/small particle or disordered goethite and some lepidocrocite; oxidation of Fe(II)aq alone favored lepidocrocite. SRFA reduced oxidation rates in all treatments except the mineral-free systems at 21% pO2, and SRFA decreased Fe(III) phase crystallinity, facilitating low-crystalline ferrihydrite in the absence of mineral sorbents, low-crystalline lepidocrocite in the presence of γ-Al2O3, but either crystalline goethite or ferrihydrite when goethite was present. This work highlights that the oxidation rate, the types of mineral surfaces, and OM control Fe(III) precipitate composition.
科研通智能强力驱动
Strongly Powered by AbleSci AI