Shape and boundary-aware multi-branch model for semi-supervised medical image segmentation

计算机科学 分割 人工智能 图像分割 边界(拓扑) 一致性(知识库) 棱锥(几何) 特征(语言学) 联营 模式识别(心理学) 机器学习 计算机视觉 数学 哲学 数学分析 几何学 语言学
作者
Xiaowei Liu,Yikun Hu,Jianguo Chen,Keqin Li
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:143: 105252-105252 被引量:13
标识
DOI:10.1016/j.compbiomed.2022.105252
摘要

Supervised learning-based medical image segmentation solutions usually require sufficient labeled training data. Insufficient available labeled training data often leads to the limitations of model performances, such as over-fitting, low accuracy, and poor generalization ability. However, this dilemma may worsen in the field of medical image analysis. Medical image annotation is usually labor-intensive and professional work. In this work, we propose a novel shape and boundary-aware deep learning model for medical image segmentation based on semi-supervised learning. The model makes good use of labeled data and also enables unlabeled data to be well applied by using task consistency loss. Firstly, we adopt V-Net for Pixel-wise Segmentation Map (PSM) prediction and Signed Distance Map (SDM) regression. In addition, we multiply multi-scale features, extracted by Pyramid Pooling Module (PPM) from input X, with 2 - |SDM| to enhance the features around the boundary of the segmented target, and then feed them into the Feature Fusion Module (FFM) for fine segmentation. Besides boundary loss, the high-level semantics implied in SDM facilitate the accurate segmentation of boundary regions. Finally, we get the ultimate result by fusing coarse and boundary-enhanced features. Last but not least, to mine unlabeled training data, we impose consistency constraints on the three core outputs of the model, namely PSM1, SDM, and PSM3. Through extensive experiments over three representative but challenging medical image datasets (LA2018, BraTS2019, and ISIC2018) and comparisons with the existing representative methods, we validate the practicability and superiority of our model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呢n发布了新的文献求助10
1秒前
Baboonium完成签到,获得积分10
1秒前
无昵称完成签到,获得积分10
2秒前
2秒前
受伤芝麻发布了新的文献求助10
2秒前
优美汉堡发布了新的文献求助10
2秒前
3秒前
润润轩轩发布了新的文献求助10
3秒前
赵哈哈完成签到 ,获得积分10
3秒前
zys完成签到,获得积分10
3秒前
凑阿库娅发布了新的文献求助10
3秒前
LONG完成签到 ,获得积分10
4秒前
Owen应助AI采纳,获得10
4秒前
小小完成签到 ,获得积分10
4秒前
4秒前
阿童木发布了新的文献求助10
4秒前
JamesPei应助白日梦我采纳,获得10
4秒前
Wuhuijing完成签到,获得积分10
4秒前
狂吃五碗饭完成签到,获得积分10
5秒前
Graham完成签到,获得积分10
5秒前
CodeCraft应助整齐的访梦采纳,获得10
5秒前
班小班完成签到,获得积分10
5秒前
小呵点完成签到 ,获得积分10
6秒前
Jindyla完成签到,获得积分10
7秒前
zcw完成签到,获得积分10
7秒前
τ涛发布了新的文献求助10
7秒前
魔女完成签到,获得积分10
8秒前
盏茶轻抿完成签到,获得积分10
9秒前
jor666完成签到,获得积分10
9秒前
复杂的香菱完成签到,获得积分10
9秒前
爱吃火锅的lulu完成签到 ,获得积分10
9秒前
猪猪hero发布了新的文献求助10
10秒前
10秒前
10秒前
科研通AI5应助逍遥采纳,获得10
10秒前
锋feng完成签到 ,获得积分10
11秒前
稳重的雅绿完成签到 ,获得积分10
11秒前
小猪找库里完成签到,获得积分10
12秒前
as完成签到,获得积分10
12秒前
12秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Study of enhancing employee engagement at workplace by adopting internet of things 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837906
求助须知:如何正确求助?哪些是违规求助? 3379958
关于积分的说明 10511877
捐赠科研通 3099610
什么是DOI,文献DOI怎么找? 1707177
邀请新用户注册赠送积分活动 821447
科研通“疑难数据库(出版商)”最低求助积分说明 772617