[Predictive value of machine learning for in-hospital mortality for trauma-induced acute respiratory distress syndrome patients: an analysis using the data from MIMIC III].

医学 急性呼吸窘迫综合征 优势比 接收机工作特性 重症监护室 逻辑回归 置信区间 机械通风 内科学 沙发评分 肾脏替代疗法 SAPS II型 体质指数 阿帕奇II
作者
Rui Tang,Wen Tang,Daoxin Wang
出处
期刊:PubMed 卷期号:34 (3): 260-264 被引量:3
标识
DOI:10.3760/cma.j.cn121430-20211117-01741
摘要

To investigate the value of machine learning methods for predicting in-hospital mortality in trauma patients with acute respiratory distress syndrome (ARDS).A retrospective non-intervention case-control study was performed. Trauma patients with ARDS met the Berlin definition were extracted from the the Medical Information Mart for Intensive Care III (MIMIC III) database. The basic information [including gender, age, body mass index (BMI), pH, oxygenation index, laboratory indexes, length of stay in the intensive care unit (ICU), the proportion of mechanical ventilation (MV) or continuous renal replacement therapy (CRRT), acute physiology score III (APS III), sequential organ failure score (SOFA) and simplified acute physiology score II (SAPS II)], complications (including hypertension, diabetes, infection, acute hemorrhagic anemia, sepsis, shock, acidosis and pneumonia) and prognosis data of patients were collected. Multivariate Logistic regression analysis was used to screen meaningful variables (P < 0.05). Logistic regression model, XGBoost model and artificial neural network model were constructed, and the receiver operator characteristic curve (ROC) was performed to evaluate the predictive value of the three models for in-hospital mortality in trauma patients with ARDS.A total of 760 trauma patients with ARDS were enrolled, including 346 mild cases, 301 moderate cases and 113 severe cases; 618 cases survived and 142 cases died in hospital; 736 cases received MV and 65 cases received CRRT. Multivariate Logistic regression analysis screened out significant variables, including age [odds ratio (OR) = 1.035, 95% confidence interval (95%CI) was 1.020-1.050, P < 0.001], BMI (OR = 0.949, 95%CI was 0.917-0.983, P = 0.003), blood urea nitrogen (BUN; OR = 1.019, 95%CI was 1.004-1.033, P = 0.010), lactic acid (Lac; OR = 1.213, 95%CI was 1.124-1.309, P < 0.001), red cell volume distribution width (RDW; OR = 1.249, 95%CI was 1.102-1.416, P < 0.001), hematocrit (HCT, OR = 1.057, 95%CI was 1.019-1.097, P = 0.003), hypertension (OR = 0.614, 95%CI was 0.389-0.968, P = 0.036), infection (OR = 0.463, 95%CI was 0.289-0.741, P = 0.001), acute renal failure (OR = 2.021, 95%CI was 1.267-3.224, P = 0.003) and sepsis (OR = 2.105, 95%CI was 1.265-3.502, P = 0.004). All the above variables were used to construct the model. Logistic regression model, XGBoost model and artificial neural network model predicted in-hospital mortality with area under the curve (AUC) of 0.737 (95%CI was 0.659-0.815), 0.745 (95%CI was 0.672-0.819) and 0.757 (95%CI was 0.680-0.884), respectively. There was no significant difference between any two models (all P > 0.05).Logistic regression model, XGBoost model and artificial neural network model including age, BMI, BUN, Lac, RDW, HCT, hypertension, infection, acute renal failure and sepsis have good predictive value for in-hospital mortality of trauma patients with ARDS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Triumph完成签到,获得积分10
3秒前
3秒前
爬爬公主发布了新的文献求助10
4秒前
li发布了新的文献求助10
6秒前
sissi完成签到,获得积分10
6秒前
zz0429发布了新的文献求助10
7秒前
7秒前
ok发布了新的文献求助10
9秒前
hhhhccer完成签到,获得积分10
10秒前
小郭发布了新的文献求助10
11秒前
学术小天才完成签到 ,获得积分10
13秒前
14秒前
从容的巧曼完成签到 ,获得积分10
14秒前
15秒前
菠萝夫司机完成签到,获得积分10
17秒前
17秒前
AU完成签到,获得积分20
18秒前
良辰应助书文混四方采纳,获得10
18秒前
jiangwei完成签到,获得积分10
19秒前
科研通AI5应助爬爬公主采纳,获得200
20秒前
研友_VZG7GZ应助科研通管家采纳,获得10
21秒前
21秒前
烟花应助科研通管家采纳,获得10
21秒前
烟花应助科研通管家采纳,获得10
22秒前
桐桐应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
研友_VZG7GZ应助科研通管家采纳,获得10
22秒前
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
药剂机智小仓鼠完成签到,获得积分10
22秒前
22秒前
zz0429发布了新的文献求助10
22秒前
共享精神应助3719left采纳,获得10
24秒前
顺利绿真完成签到,获得积分10
26秒前
情怀应助碎尘采纳,获得10
26秒前
李健应助许笑妍采纳,获得10
26秒前
wulixin完成签到,获得积分10
27秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
A warm-up performed with proper-weight sandbags on the leg improves the speed and RPE performance of 100 m sprint in collegiate male sprinters 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826938
求助须知:如何正确求助?哪些是违规求助? 3369242
关于积分的说明 10454864
捐赠科研通 3088829
什么是DOI,文献DOI怎么找? 1699473
邀请新用户注册赠送积分活动 817343
科研通“疑难数据库(出版商)”最低求助积分说明 770158