Regularizing Graph Neural Networks via Consistency-Diversity Graph Augmentations

计算机科学 正确性 正规化(语言学) 图形 一般化 一致性(知识库) 机器学习 同性恋 人工智能 人工神经网络 理论计算机科学 数学 算法 组合数学 数学分析
作者
Deyu Bo,Binbin Hu,Xiao Wang,Zhiqiang Zhang,Chuan Shi,Jun Zhou
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:36 (4): 3913-3921 被引量:22
标识
DOI:10.1609/aaai.v36i4.20307
摘要

Despite the remarkable performance of graph neural networks (GNNs) in semi-supervised learning, it is criticized for not making full use of unlabeled data and suffering from over-fitting. Recently, graph data augmentation, used to improve both accuracy and generalization of GNNs, has received considerable attentions. However, one fundamental question is how to evaluate the quality of graph augmentations in principle? In this paper, we propose two metrics, Consistency and Diversity, from the aspects of augmentation correctness and generalization. Moreover, we discover that existing augmentations fall into a dilemma between these two metrics. Can we find a graph augmentation satisfying both consistency and diversity? A well-informed answer can help us understand the mechanism behind graph augmentation and improve the performance of GNNs. To tackle this challenge, we analyze two representative semi-supervised learning algorithms: label propagation (LP) and consistency regularization (CR). We find that LP utilizes the prior knowledge of graphs to improve consistency and CR adopts variable augmentations to promote diversity. Based on this discovery, we treat neighbors as augmentations to capture the prior knowledge embodying homophily assumption, which promises a high consistency of augmentations. To further promote diversity, we randomly replace the immediate neighbors of each node with its remote neighbors. After that, a neighbor-constrained regularization is proposed to enforce the predictions of the augmented neighbors to be consistent with each other. Extensive experiments on five real-world graphs validate the superiority of our method in improving the accuracy and generalization of GNNs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
victory_liu完成签到,获得积分10
5秒前
qq完成签到 ,获得积分10
9秒前
xy完成签到 ,获得积分10
14秒前
直率芮完成签到 ,获得积分10
18秒前
故意的问安完成签到 ,获得积分10
20秒前
ocean完成签到,获得积分10
20秒前
Li应助王大哥采纳,获得10
23秒前
Fx完成签到 ,获得积分10
32秒前
竞鹤发布了新的文献求助10
39秒前
狼来了aas完成签到,获得积分10
39秒前
h41692011完成签到 ,获得积分10
40秒前
邓代容完成签到 ,获得积分10
40秒前
snoke完成签到 ,获得积分10
44秒前
喝酸奶不舔盖完成签到 ,获得积分10
48秒前
竞鹤完成签到,获得积分10
48秒前
玩命的无春完成签到 ,获得积分10
53秒前
最美夕阳红完成签到 ,获得积分10
54秒前
淞淞于我完成签到 ,获得积分10
55秒前
柒八染完成签到 ,获得积分10
1分钟前
喵了个咪完成签到 ,获得积分10
1分钟前
ng完成签到 ,获得积分10
1分钟前
Never stall完成签到 ,获得积分10
1分钟前
某某完成签到 ,获得积分10
1分钟前
yingzaifeixiang完成签到 ,获得积分10
1分钟前
水电费黑科技完成签到,获得积分10
1分钟前
失眠的香蕉完成签到 ,获得积分10
1分钟前
飞快的孱完成签到,获得积分10
1分钟前
李新光完成签到 ,获得积分10
1分钟前
魔幻蓉完成签到 ,获得积分10
1分钟前
鼠鼠完成签到 ,获得积分10
1分钟前
现代完成签到,获得积分10
1分钟前
英姑应助细心的语蓉采纳,获得10
1分钟前
文献通完成签到 ,获得积分10
1分钟前
chenbin完成签到,获得积分10
1分钟前
1002SHIB完成签到,获得积分10
1分钟前
nihaolaojiu完成签到,获得积分10
1分钟前
back you up应助科研通管家采纳,获得50
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
sheetung完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795624
求助须知:如何正确求助?哪些是违规求助? 3340681
关于积分的说明 10300956
捐赠科研通 3057185
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805449
科研通“疑难数据库(出版商)”最低求助积分说明 762626