工作量
计算机科学
凝视
认知
眼动
囊状掩蔽
人工智能
特征(语言学)
人机交互
机器学习
眼球运动
心理学
操作系统
语言学
哲学
神经科学
作者
Vasileios Skaramagkas,Emmanouil Ktistakis,Dimitris Manousos,Nikolaos S. Tachos,Eleni Kazantzaki,Evanthia E. Tripoliti,Dimitrios I. Fotiadis,Manolis Tsiknakis
标识
DOI:10.1109/bibe52308.2021.9635166
摘要
Cognitive workload is a critical feature in related psychology, ergonomics, and human factors for understanding performance. However, it still is difficult to describe and thus, to measure it. Since there is no single sensor that can give a full understanding of workload, extended research has been conducted in order to present robust biomarkers. During the last years, machine learning techniques have been used to predict cognitive workload based on various features. Gaze extracted features, such as pupil size, blink activity and saccadic measures, have been used as predictors. The aim of this study is to use gaze extracted features as the only predictors of cognitive workload. Two factors were investigated: time pressure and multi tasking. The findings of this study showed that eye and gaze features are useful indicators of cognitive workload levels, reaching up to 88% accuracy.
科研通智能强力驱动
Strongly Powered by AbleSci AI