Bimetallic oxide Cu1.5Mn1.5O4 cage-like frame nanospheres with triple enzyme-like activities for bacterial-infected wound therapy

双金属片 材料科学 催化作用 纳米技术 化学 生物化学
作者
Konglin Wu,Dongdong Zhu,Xingliang Dai,Wanni Wang,Xiaoyan Zhong,Zhaobin Fang,Cheng Peng,Xianwen Wei,Haisheng Qian,Xu‐Lin Chen,Xianwen Wang,Zhengbao Zha,Liang Cheng
出处
期刊:Nano Today [Elsevier BV]
卷期号:43: 101380-101380 被引量:128
标识
DOI:10.1016/j.nantod.2022.101380
摘要

Copper-based nanomaterials with intrinsic enzyme-like activity have shown increasing potential as new broad-spectrum antibiotics. However, due to its low catalytic activity, poor glutathione (GSH) depletion capacity, and complex material design, their feasibility is still far from satisfactory. Herein, bimetallic oxide Cu1.5Mn1.5O4 cage-like frame nanospheres (CFNSs) were successfully prepared by a two-step approach for the first time, including gas-assisted soft template solvothermal preparation of Cu-Mn hydroxide hollow sphere (Cu-Mn-OH HSs) precursors, and then calcination to synthesize Cu1.5Mn1.5O4 CFNSs. This ingenious, simple, and rapid material synthesis strategy could obtain well-dispersed and extremely uniform Cu1.5Mn1.5O4 CFNSs with a special mesoporous cavity structure, making its performance close to the requirements of practical applications. Interestingly, the as-prepared Cu1.5Mn1.5O4 CFNSs showed enhanced triple enzyme-like activities (oxidase-, peroxidase-, and glutathione peroxidase-like), which could significantly promote the generation of reactive oxygen species (ROS) due to the increased exposure of active edge sites. Cu1.5Mn1.5O4 CFNSs could effectively kill bacteria by combining OXD-like, POD-like, and GSH-Px-like nanozyme activities. More importantly, in vivo wound healing showed that Cu1.5Mn1.5O4 CFNSs could be conveniently used for wound disinfection. In addition, Cu1.5Mn1.5O4 CFNSs exhibited excellent biosafety without observable toxicity or side effects in mice. This work emphasizes the potential application of bimetallic oxides with triple enzyme-like activities in antibacterial therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花笙米完成签到,获得积分10
刚刚
刚刚
zhengzheng发布了新的文献求助10
1秒前
Sandstorm完成签到,获得积分10
1秒前
一路向北发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助50
2秒前
话家完成签到,获得积分10
2秒前
squirtle发布了新的文献求助10
2秒前
song完成签到 ,获得积分10
2秒前
2秒前
2秒前
2秒前
xu完成签到,获得积分10
2秒前
xxxnnn完成签到,获得积分10
3秒前
CipherSage应助景穆采纳,获得10
3秒前
3秒前
3秒前
4秒前
Zhang完成签到,获得积分10
4秒前
情怀应助宅了五百年采纳,获得10
5秒前
科研通AI5应助宅了五百年采纳,获得10
5秒前
英俊的铭应助宅了五百年采纳,获得10
5秒前
隐形曼青应助宅了五百年采纳,获得10
5秒前
JamesPei应助宅了五百年采纳,获得10
5秒前
MA完成签到,获得积分10
6秒前
小马甲应助刘倩雯采纳,获得150
6秒前
科研通AI6应助爱学的李根采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
7秒前
zxy发布了新的文献求助10
7秒前
zhengzheng完成签到,获得积分10
8秒前
zcl应助小付采纳,获得20
8秒前
puyehwu发布了新的文献求助10
8秒前
10秒前
10秒前
11秒前
11秒前
老杨完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4673874
求助须知:如何正确求助?哪些是违规求助? 4052224
关于积分的说明 12531184
捐赠科研通 3745991
什么是DOI,文献DOI怎么找? 2068917
邀请新用户注册赠送积分活动 1098052
科研通“疑难数据库(出版商)”最低求助积分说明 978276