A clinical prediction model to identify patients at high risk of death in the emergency department

医学 急诊科 急诊医学 格拉斯哥昏迷指数 毛细管再灌注 接收机工作特性 逻辑回归 麻醉学 临床预测规则 感染性休克 前瞻性队列研究 急诊分诊台 生命体征 重症监护医学 败血症 内科学 血压 外科 麻醉 精神科
作者
Michael Coslovsky,Jukka Takala,Aristomenis K. Exadaktylos,Luca Martinolli,Tobias M. Merz
出处
期刊:Intensive Care Medicine [Springer Science+Business Media]
卷期号:41 (6): 1029-1036 被引量:32
标识
DOI:10.1007/s00134-015-3737-x
摘要

Rapid assessment and intervention is important for the prognosis of acutely ill patients admitted to the emergency department (ED). The aim of this study was to prospectively develop and validate a model predicting the risk of in-hospital death based on all available information available at the time of ED admission and to compare its discriminative performance with a non-systematic risk estimate by the triaging first health-care provider.Prospective cohort analysis based on a multivariable logistic regression for the probability of death.A total of 8,607 consecutive admissions of 7,680 patients admitted to the ED of a tertiary care hospital were analysed. Most frequent APACHE II diagnostic categories at the time of admission were neurological (2,052, 24%), trauma (1,522, 18%), infection categories [1,328, 15%; including sepsis (357, 4.1%), severe sepsis (249, 2.9%), septic shock (27, 0.3%)], cardiovascular (1,022, 12%), gastrointestinal (848, 10%) and respiratory (449, 5%). The predictors of the final model were age, prolonged capillary refill time, blood pressure, mechanical ventilation, oxygen saturation index, Glasgow coma score and APACHE II diagnostic category. The model showed good discriminative ability, with an area under the receiver operating characteristic curve of 0.92 and good internal validity. The model performed significantly better than non-systematic triaging of the patient.The use of the prediction model can facilitate the identification of ED patients with higher mortality risk. The model performs better than a non-systematic assessment and may facilitate more rapid identification and commencement of treatment of patients at risk of an unfavourable outcome.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星期八发布了新的文献求助10
刚刚
刚刚
冯不言发布了新的文献求助10
刚刚
刚刚
苗条桐发布了新的文献求助10
刚刚
鳗鱼绿蝶发布了新的文献求助10
刚刚
浮游应助daring采纳,获得10
1秒前
善学以致用应助ppapppap采纳,获得10
1秒前
李静怡关注了科研通微信公众号
2秒前
WANG发布了新的文献求助10
2秒前
七小七完成签到,获得积分10
2秒前
mmmmmMM完成签到,获得积分10
2秒前
林途完成签到,获得积分10
3秒前
4秒前
4秒前
迷人不凡发布了新的文献求助30
5秒前
像个小蛤蟆完成签到 ,获得积分10
6秒前
7秒前
CodeCraft应助Ryuu采纳,获得30
7秒前
皮蛋瘦肉粥完成签到,获得积分10
7秒前
7秒前
七小七发布了新的文献求助10
9秒前
冯不言完成签到,获得积分10
9秒前
浮游应助苗条桐采纳,获得10
9秒前
11秒前
cloud发布了新的文献求助30
11秒前
李静怡发布了新的文献求助10
12秒前
12秒前
goldsmile完成签到,获得积分20
12秒前
ppapppap发布了新的文献求助10
13秒前
鱼鱼余裕关注了科研通微信公众号
13秒前
14秒前
15秒前
16秒前
画船听雨眠完成签到,获得积分10
17秒前
sxx应助daring采纳,获得10
19秒前
Ryuu发布了新的文献求助30
19秒前
宋天宇发布了新的文献求助10
20秒前
21秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
National standards & grade-level outcomes for K-12 physical education 400
Vertebrate Palaeontology, 5th Edition 210
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4819286
求助须知:如何正确求助?哪些是违规求助? 4128281
关于积分的说明 12776094
捐赠科研通 3867792
什么是DOI,文献DOI怎么找? 2128377
邀请新用户注册赠送积分活动 1149170
关于科研通互助平台的介绍 1044951