已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Modeling Cell–Cell Interactions in Regulating Multiple Myeloma Initiating Cell Fate

祖细胞 细胞命运测定 生物 细胞生物学 人口 细胞 细胞生长 细胞培养 干细胞 流式细胞术 电池类型 细胞分化 免疫学 遗传学 医学 转录因子 环境卫生 基因
作者
Tao Peng,Huiming Peng,Dong Soon Choi,Jing Su,Chung‐Che Chang,Xiaobo Zhou
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (2): 484-491 被引量:6
标识
DOI:10.1109/jbhi.2013.2281774
摘要

Cancer initiating cells have been documented in multiple myeloma and believed to be a key factor that initiates and drives tumor growth, differentiation,metastasis, and recurrence of the diseases. Although myeloma initiating cells (MICs) are likely to share many properties of normal stem cells, the underlying mechanisms regulating the fate of MICs are largely unknown. Studies designed to explore such communication are urgently needed to enhance our ability to predict the fate decisions of ICs (self-renewal, differentiation, and proliferation). In this study, we developed a novel system to understand the intercellular communication between MICs and their niche by seamlessly integrating experimental data and mathematical model. We first designed dynamic cell culture experiments and collected three types of cells (side population cells, progenitor cells, and mature myeloma cells) under various cultural conditions with flow cytometry. Then we developed a lineage model with ordinary differential equations by considering secreted factors, self-renewal, differentiation, and other biological functions of those cells, to model the cell–cell interactions among the three cell types. Particle swarm optimization was employed to estimate the model parameters by fitting the experimental data to the lineage model. The theoretical results show that the correlation coefficient analysis can reflect the feedback loops among the three cell types, the intercellular feedback signaling can regulate cell population dynamics, and the culture strategies can decide cell growth. This study provides a basic framework of studying cell–cell interactions in regulating MICs fate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Superg发布了新的文献求助10
2秒前
3秒前
橄榄树完成签到,获得积分10
4秒前
zxd完成签到,获得积分10
5秒前
李健应助义气祥采纳,获得10
6秒前
seven发布了新的文献求助10
6秒前
leaolf应助makus采纳,获得20
7秒前
Jasper应助xiaoyang采纳,获得10
10秒前
11秒前
6464完成签到,获得积分10
14秒前
婳嬨发布了新的文献求助10
15秒前
15秒前
makus完成签到,获得积分10
16秒前
称心元枫完成签到,获得积分10
19秒前
19秒前
20秒前
卷儿w发布了新的文献求助30
20秒前
柳行天完成签到 ,获得积分10
21秒前
扶摇完成签到 ,获得积分10
22秒前
唐若冰完成签到,获得积分10
22秒前
Akim应助曹鑫宇采纳,获得10
23秒前
23秒前
25秒前
Yan应助蛋邑采纳,获得10
25秒前
28秒前
小米辣完成签到,获得积分10
29秒前
30秒前
31秒前
英吉利25发布了新的文献求助10
32秒前
峡星牙发布了新的文献求助10
33秒前
33秒前
33秒前
田様应助寂寞圣贤采纳,获得10
36秒前
曹鑫宇发布了新的文献求助10
36秒前
洞两完成签到,获得积分10
36秒前
tanhaowen完成签到 ,获得积分10
39秒前
辛勤小鸽子完成签到 ,获得积分10
40秒前
HK发布了新的文献求助20
41秒前
婳嬨完成签到,获得积分10
43秒前
星辰大海应助cy采纳,获得10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
苯丙氨酸解氨酶的祖先序列重建及其催化性能 500
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Effects of different anesthesia methods on bleeding and prognosis in endoscopic sinus surgery: a meta-analysis and systematic review of randomized controlled trials 400
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4843861
求助须知:如何正确求助?哪些是违规求助? 4144540
关于积分的说明 12832923
捐赠科研通 3890967
什么是DOI,文献DOI怎么找? 2138855
邀请新用户注册赠送积分活动 1158993
关于科研通互助平台的介绍 1059043