Modeling the Functional Effects of Allosteric Modulators at Pharmacological Receptors: An Extension of the Two-State Model of Receptor Activation

变构调节 变构调节剂 化学 受体 变构酶 内在活性 配体(生物化学) 药物发现 神经科学 兴奋剂 生物 生物化学
作者
David A. Hall
出处
期刊:Molecular Pharmacology [American Society for Pharmacology and Experimental Therapeutics]
卷期号:58 (6): 1412-1423 被引量:186
标识
DOI:10.1124/mol.58.6.1412
摘要

Allosteric modulation is a mechanism for modifying pharmacological receptor activity that has largely been ignored in terms of therapeutic drug design, although benzodiazepine receptor ligands are an example of the serendipitous discovery of this class of compound. The current mathematical models of allosteric interactions at (particularly G-protein-coupled) receptors concentrate on the effects of the allosteric ligand on orthosteric ligand binding and ignore potential effects of these compounds on the ability of orthosteric ligands to cause receptor activation. In this report a mathematical model of allosteric interactions at pharmacological receptors has been investigated that explicitly includes effects of the allosteric ligand on receptor activation. This model uses the two-state model of receptor activation as its basis and is qualitatively consistent with currently reported behavior of allosteric modulators. The predictions of this model suggest a series of criteria that should be tested before the effects of an allosteric modulator can be quantified in a nonsystem-dependent manner. It has also been used to provide a potential mechanistic explanation for the functional effects of the A(1) adenosine receptor allosteric enhancer PD 81,723 and a recently reported allosteric modulator of type 1 metabotropic glutamate receptors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
智慧无穷发布了新的文献求助10
2秒前
难难难完成签到,获得积分10
2秒前
雷寒云发布了新的文献求助10
3秒前
4秒前
4秒前
赘婿应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
肥猫留下了新的社区评论
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
6秒前
livr发布了新的文献求助10
6秒前
张正发布了新的文献求助10
8秒前
科研通AI5应助曾经的问晴采纳,获得10
8秒前
yogurt完成签到,获得积分20
10秒前
ever完成签到,获得积分10
11秒前
11秒前
Drink完成签到,获得积分10
11秒前
魔幻傲霜发布了新的文献求助10
11秒前
木木发布了新的文献求助10
13秒前
lzk完成签到,获得积分10
14秒前
14秒前
华仔应助aaron采纳,获得10
15秒前
Akim应助智慧无穷采纳,获得10
15秒前
简单不悔完成签到,获得积分20
15秒前
魔幻傲霜完成签到,获得积分10
16秒前
青藤发布了新的文献求助30
17秒前
livr完成签到,获得积分20
19秒前
20秒前
Michaelfall完成签到,获得积分10
20秒前
简单不悔发布了新的文献求助30
21秒前
SciGPT应助景雪航采纳,获得10
22秒前
Xz发布了新的文献求助10
22秒前
我是老大应助杏树采纳,获得10
23秒前
hj发布了新的文献求助30
25秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835028
求助须知:如何正确求助?哪些是违规求助? 3377526
关于积分的说明 10498888
捐赠科研通 3097008
什么是DOI,文献DOI怎么找? 1705417
邀请新用户注册赠送积分活动 820558
科研通“疑难数据库(出版商)”最低求助积分说明 772123