软骨细胞
软骨发生
软骨
血管生成
缺氧诱导因子
血管内皮生长因子
骨关节炎
癌症研究
血管内皮生长因子A
化学
免疫学
医学
病理
解剖
血管内皮生长因子受体
生物化学
基因
替代医学
作者
Xiang Zhang,Indira Prasadam,Wei Fang,Ross Crawford,Yin Xiao
标识
DOI:10.1016/j.joca.2016.06.005
摘要
ObjectivesHypoxia is known to stabilize hypoxia-inducible factor (HIF) and initiate angiogenic signaling cascade. However, cartilage living in hypoxia environment can maintain avascularity. It is well known that abrogation of avascularity is related to cartilage degradation in osteoarthritis (OA). The aims of present study were to investigate the role of chondromodulin-1 (ChM-1), an endogenously anti-angiogenic protein in cartilage, during chondrocyte maturation and OA progression, as well as to explore the molecular mechanisms underlying the function of ChM-1 with a focus on HIF-2α pathway.MethodsAngiogenic-related markers were evaluated in OA cartilage and different stages of chondrocyte differentiation. Chondrocytes transfected with ChM-1 lentivirus or siRNA was treated with tumor necrosis factor (TNF-α) to investigate the role of ChM-1 in chondrocyte hypertrophic changes. In vivo study was conducted by using a surgical induced OA rat model with intra-articular injection of lentivirus ChM-1 (LV-ChM-1) or mock lentivirus (LV-GFP) control. Transcriptional activity of HIF-2α was determined by chromatin immunoprecipitation (ChIP) assay to unveil the mechanisms of ChM-1.ResultsMajority angiogenic factors increased in severe OA cartilage, while anti-angiogenic factors including ChM-1 decreased. ChM-1 expression was strongly related with chondrocyte differentiation and chondrogenesis in vitro. ChM-1 overexpression protected chondrocytes from TNF-α induced hypertrophy, and intra-articular injection of LV-ChM-1 delayed OA progression. ChM-1 delayed HIF-2α nuclear translocation at early time-points and decreased transcriptional activity of HIF-2α on collagen type Х α1 (COL10A1), vascular endothelial growth factor A (VEGFA) and matrix metallopeptidase-13 (MMP-13).ConclusionsChM-1 maintains cartilage homeostasis by inhibiting HIF-2α induced catabolic activity and regulation of ChM-1 in cartilage may be a promising therapeutic strategy for OA.
科研通智能强力驱动
Strongly Powered by AbleSci AI