光动力疗法
化学
癌症治疗
纳米技术
光子上转换
线粒体
癌症研究
癌细胞
癌症
材料科学
生物化学
医学
离子
有机化学
内科学
生物
作者
Xiaoman Zhang,Fujin Ai,Tianying Sun,Feng Wang,Guangyu Zhu
出处
期刊:Inorganic Chemistry
[American Chemical Society]
日期:2016-04-06
卷期号:55 (8): 3872-3880
被引量:66
标识
DOI:10.1021/acs.inorgchem.6b00020
摘要
Upconversion nanoparticles (UCNPs) with the capacity to emit high-energy visible or UV light under low-energy near-infrared excitation have been extensively explored for biomedical applications including imaging and photodynamic therapy (PDT) against cancer. Enhanced cellular uptake and controlled subcellular localization of a UCNP-based PDT system are desired to broaden the biomedical applications of the system and to increase its PDT effect. Herein, we build a multimodal nanoplatform with enhanced therapeutic efficiency based on 808 nm excited NaYbF4:Nd@NaGdF4:Yb/Er@NaGdF4 core–shell–shell nanoparticles that have a minimized overheating effect. The photosensitizer pyropheophorbide a (Ppa) is loaded onto the nanoparticles capped with biocompatible polymers, and the nanoplatform is functionalized with transcriptional activator peptides as targeting moieties. Significantly increased cellular uptake of the nanoparticles and dramatically elevated photocytotoxicity are achieved. Remarkably, colocalization of Ppa with mitochondria, a crucial subcellular organelle as a target of PDT, is proven and quantified. The subsequent damage to mitochondria caused by this colocalization is also confirmed to be significant. Our work provides a comprehensively improved UCNP-based nanoplatform that maintains great biocompatibility but shows higher photocytotoxicity under irradiation and superior imaging capabilities, which increases the biomedical values of UCNPs as both nanoprobes and carriers of photosensitizers toward mitochondria for PDT.
科研通智能强力驱动
Strongly Powered by AbleSci AI