材料科学
光催化
异质结
堆积
催化作用
纳米材料
化学工程
氧化物
吸附
纳米颗粒
碳纤维
石墨氮化碳
纳米技术
电子结构
载流子
氮化物
密度泛函理论
纳米晶
动力学
析氧
金属
氮化碳
氧气
复合数
结构稳定性
化学物理
可见光谱
反应机理
叠加断层
化学动力学
作者
Chen Li,Jia-Wei Song,Xinyu Guo,Rui Zhang,Peijie Ma,Kun Zheng
标识
DOI:10.1002/adfm.202525385
摘要
Abstract The development of nano‐catalysts with carbon‐encapsulated architectures represents a promising approach for constructing high‐performance catalytic systems. Nevertheless, the reaction kinetics at the surface of the carbon shell and electronic structure evolution at the core–shell interface remain poorly understood, hindering mechanistic insight into the catalytic processes. Herein, the synthesis of layered CoO 2 nanoparticles encapsulated in a graphitic carbon nitride (g‐C 3 N 4 ) framework (g‐C 3 N 4 @CoO 2 ) is reported, which achieves a high photocatalytic H 2 O 2 production rate of 412.7 µmol g −1 h −1 . Detailed structural analysis confirms the exceptional stability of the g‐C 3 N 4 @CoO 2 . Photocatalytic tests under diverse conditions, combined with in situ evidence, establish that H 2 O 2 generation occurs via the two‐electron oxygen reduction reaction (2e − ORR). Furthermore, first‐principles calculations indicate that lattice mismatch, resulting from a high density of stacking faults in the layered material, facilitates local charge accumulation and induces significant electronic restructuring within the g‐C 3 N 4 shell, which boosts the adsorption and activation capabilities of g‐C 3 N 4 @CoO 2 toward reactant species. The work offers a viable design strategy for carbon–nitrogen encapsulated layered metal oxide nanomaterials aimed at efficient photocatalytic H 2 O 2 production, while providing new insights into interfacial effects within composite catalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI