人工智能
卷积神经网络
药物警戒
计算机科学
医学
深度学习
健康档案
电子健康档案
人工神经网络
大出血
重症监护医学
不利影响
医疗急救
内科学
医疗保健
心肌梗塞
经济
经济增长
作者
Rumeng Li,Baotian Hu,Feifan Liu,Weisong Liu,Francesca Cunningham,David D. McManus,Hong Yu
摘要
Bleeding events are common and critical and may cause significant morbidity and mortality. High incidences of bleeding events are associated with cardiovascular disease in patients on anticoagulant therapy. Prompt and accurate detection of bleeding events is essential to prevent serious consequences. As bleeding events are often described in clinical notes, automatic detection of bleeding events from electronic health record (EHR) notes may improve drug-safety surveillance and pharmacovigilance.We aimed to develop a natural language processing (NLP) system to automatically classify whether an EHR note sentence contains a bleeding event.We expert annotated 878 EHR notes (76,577 sentences and 562,630 word-tokens) to identify bleeding events at the sentence level. This annotated corpus was used to train and validate our NLP systems. We developed an innovative hybrid convolutional neural network (CNN) and long short-term memory (LSTM) autoencoder (HCLA) model that integrates a CNN architecture with a bidirectional LSTM (BiLSTM) autoencoder model to leverage large unlabeled EHR data.HCLA achieved the best area under the receiver operating characteristic curve (0.957) and F1 score (0.938) to identify whether a sentence contains a bleeding event, thereby surpassing the strong baseline support vector machines and other CNN and autoencoder models.By incorporating a supervised CNN model and a pretrained unsupervised BiLSTM autoencoder, the HCLA achieved high performance in detecting bleeding events.
科研通智能强力驱动
Strongly Powered by AbleSci AI