Optimal multi‐scale geometric fusion based on non‐subsampled contourlet transform and modified central force optimization

轮廓波 图像融合 人工智能 计算机科学 直方图 融合 模式识别(心理学) 计算机视觉 融合规则 图像(数学) 小波变换 小波 语言学 哲学
作者
Heba M. El‐Hoseny,Wael Abd El‐Rahman,Walid El‐Shafai,El‐Sayed M. El‐Rabaie,Korany R. Mahmoud,Fathi E. Abd El‐Samie,Osama S. Faragallah
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:29 (1): 4-18 被引量:27
标识
DOI:10.1002/ima.22289
摘要

Abstract In the current era of technological development, medical imaging plays an important part in several applications of medical diagnosis and therapy. This requires more precise images with much more details and information for correct medical diagnosis and therapy. Medical image fusion is one of the solutions for obtaining much spatial and spectral information in a single image. This article presents an optimization‐based contourlet image fusion approach in addition to a comparative study for the performance of both multi‐resolution and multi‐scale geometric effects on fusion quality. An optimized multi‐scale fusion technique based on the Non‐Subsampled Contourlet Transform (NSCT) using the Modified Central Force Optimization (MCFO) and local contrast enhancement techniques is presented. The first step in the proposed fusion approach is the histogram matching of one of the images to the other to allow the same dynamic range for both images. The NSCT is used after that to decompose the images to be fused into their coefficients. The MCFO technique is used to determine the optimum decomposition level and the optimum gain parameters for the best fusion of coefficients based on certain constraints. Finally, an additional contrast enhancement process is applied on the fused image to enhance its visual quality and reinforce details. The proposed fusion framework is subjectively and objectively evaluated with different fusion quality metrics including average gradient, local contrast, standard deviation (STD), edge intensity, entropy, peak signal‐to‐noise ratio, Q ab/f , and processing time. Experimental results demonstrate that the proposed optimized NSCT medical image fusion approach based on the MCFO and histogram matching achieves a superior performance with higher image quality, average gradient, edge intensity, STD, better local contrast and entropy, a good quality factor, and much more details in images. These characteristics help for more accurate medical diagnosis in different medical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助点击获取采纳,获得10
刚刚
koi完成签到,获得积分10
1秒前
1秒前
2秒前
瘦瘦靴发布了新的文献求助10
3秒前
ommphey完成签到 ,获得积分10
4秒前
正太低音炮完成签到,获得积分10
4秒前
核桃应助crazywilliam采纳,获得10
4秒前
风风风完成签到,获得积分10
5秒前
番茄酱完成签到,获得积分20
5秒前
6秒前
6秒前
wyd完成签到,获得积分10
6秒前
asd_1发布了新的文献求助10
6秒前
科研通AI2S应助自由思枫采纳,获得10
6秒前
鸠摩智完成签到,获得积分10
7秒前
曾予嘉完成签到 ,获得积分10
8秒前
viycole完成签到,获得积分10
8秒前
逸风望完成签到,获得积分10
9秒前
英俊的铭应助YY采纳,获得10
9秒前
9秒前
9秒前
10秒前
小二郎应助kk采纳,获得20
10秒前
wyuxilong完成签到,获得积分10
11秒前
11秒前
汪汪队完成签到 ,获得积分20
12秒前
13秒前
西瘡完成签到,获得积分10
14秒前
妖妖灵发布了新的文献求助10
14秒前
稚昂发布了新的文献求助10
14秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
无辜汉堡发布了新的文献求助10
17秒前
17秒前
转山转水完成签到,获得积分10
17秒前
wendy发布了新的文献求助10
17秒前
一叶扁舟发布了新的文献求助10
18秒前
20秒前
111完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 1200
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
Practical Invisalign Mechanics: Crowding 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4954252
求助须知:如何正确求助?哪些是违规求助? 4216573
关于积分的说明 13119708
捐赠科研通 3998788
什么是DOI,文献DOI怎么找? 2188477
邀请新用户注册赠送积分活动 1203654
关于科研通互助平台的介绍 1116068