Machine Learning to Predict In-Hospital Morbidity and Mortality after Traumatic Brain Injury

格拉斯哥昏迷指数 随机森林 创伤性脑损伤 接收机工作特性 格拉斯哥结局量表 机器学习 医学 特征选择 朴素贝叶斯分类器 脑出血 人工智能 统计 支持向量机 内科学 数学 外科 计算机科学 精神科
作者
Kazuya Matsuo,Hideo Aihara,Tomoaki Nakai,Akitsugu Morishita,Yoshiki Tohma,Eiji Kohmura
出处
期刊:Journal of Neurotrauma [Mary Ann Liebert, Inc.]
卷期号:37 (1): 202-210 被引量:91
标识
DOI:10.1089/neu.2018.6276
摘要

Recently, successful predictions using machine learning (ML) algorithms have been reported in various fields. However, in traumatic brain injury (TBI) cohorts, few studies have examined modern ML algorithms. To develop a simple ML model for TBI outcome prediction, we conducted a performance comparison of nine algorithms: ridge regression, least absolute shrinkage and selection operator (LASSO) regression, random forest, gradient boosting, extra trees, decision tree, Gaussian naïve Bayes, multi-nomial naïve Bayes, and support vector machine. Fourteen feasible parameters were introduced in the ML models, including age, Glasgow Coma Scale (GCS), systolic blood pressure (SBP), abnormal pupillary response, major extracranial injury, computed tomography (CT) findings, and routinely collected laboratory values (glucose, C-reactive protein [CRP], and fibrin/fibrinogen degradation products [FDP]). Data from 232 patients with TBI were randomly divided into a training sample (80%) for hyperparameter tuning and validation sample (20%). The bootstrap method was used for validation. Random forest demonstrated the best performance for in-hospital poor outcome prediction and ridge regression for in-hospital mortality prediction: the mean statistical measures were 100% sensitivity, 72.3% specificity, 91.7% accuracy, and 0.895 area under the receiver operating characteristic curve (AUC); and 88.4% sensitivity, 88.2% specificity, 88.6% accuracy, and 0.875 AUC, respectively. Based on the feature selection method using the tree-based ensemble algorithm, age, Glasgow Coma Scale, fibrin/fibrinogen degradation products, and glucose were identified as the most important prognostic factors for poor outcome and mortality. Our results indicate the relatively good predictive performance of modern ML for TBI outcome. Further external validation is required for more heterogeneous samples to confirm our results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
小马甲应助端庄的小蝴蝶采纳,获得10
2秒前
火焰完成签到,获得积分10
4秒前
4秒前
6秒前
SCI的芷蝶发布了新的文献求助10
7秒前
皮崇知发布了新的文献求助10
9秒前
麦克斯韦的小妖完成签到 ,获得积分10
10秒前
善学以致用应助懒羊羊采纳,获得10
11秒前
12秒前
项目多多发布了新的文献求助10
13秒前
管靖易完成签到 ,获得积分10
15秒前
15秒前
田所浩二完成签到 ,获得积分10
16秒前
烟花应助大卫采纳,获得10
17秒前
上官若男应助Hommand_藏山采纳,获得10
18秒前
doctorwang完成签到,获得积分10
19秒前
大个应助xiaoliu采纳,获得10
21秒前
22秒前
24秒前
26秒前
aldehyde应助小乌龟采纳,获得10
26秒前
强健的梦蕊完成签到 ,获得积分10
27秒前
大卫完成签到,获得积分10
27秒前
nhscyhy发布了新的文献求助10
28秒前
充电宝应助小鲨鱼采纳,获得10
29秒前
神勇的砖头完成签到,获得积分10
30秒前
Tsjng发布了新的文献求助10
30秒前
介于两石之间完成签到,获得积分10
30秒前
32秒前
xiaoliu发布了新的文献求助10
35秒前
37秒前
38秒前
40秒前
小鲨鱼完成签到,获得积分10
40秒前
43秒前
科研通AI2S应助alexisgood采纳,获得10
46秒前
meitounao完成签到,获得积分10
46秒前
poohpooh发布了新的文献求助10
47秒前
七月玖发布了新的文献求助30
48秒前
高分求助中
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Multi-omics analysis reveals the molecular mechanisms and therapeutic targets in high altitude polycythemia 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3899643
求助须知:如何正确求助?哪些是违规求助? 3444222
关于积分的说明 10833862
捐赠科研通 3169129
什么是DOI,文献DOI怎么找? 1750950
邀请新用户注册赠送积分活动 846407
科研通“疑难数据库(出版商)”最低求助积分说明 789191