卡尔曼滤波器
无味变换
扩展卡尔曼滤波器
集合卡尔曼滤波器
不变扩展卡尔曼滤波器
α-β滤光片
数学
控制理论(社会学)
高斯分布
快速卡尔曼滤波
力矩(物理)
背景(考古学)
滤波器(信号处理)
应用数学
计算机科学
移动视界估计
统计
物理
人工智能
生物
经典力学
古生物学
量子力学
计算机视觉
控制(管理)
摘要
Many nonlinear extensions of the Kalman filter, e.g., the extended and the unscented Kalman filter, reduce the state densities to Gaussian densities. This approximation gives sufficient results in many cases. However, these filters only estimate states that are correlated with the observation. Therefore, sequential estimation of diffusion parameters, e.g., volatility, which are not correlated with the observations is not possible. While other filters overcome this problem with simulations, we extend the measurement update of the Gaussian two-moment filters by a higher order correlation measurement update. We explicitly state formulas for a higher order unscented Kalman filter within a continuous–discrete state space. We demonstrate the filter in the context of parameter estimation of an Ornstein–Uhlenbeck process.
科研通智能强力驱动
Strongly Powered by AbleSci AI