Electrically induced 2D half-metallic antiferromagnets and spin field effect transistors

自旋电子学 凝聚态物理 自旋极化 自旋晶体管 电子 自旋(空气动力学) 反铁磁性 铁磁性 电场 带隙 材料科学 密度泛函理论 物理 自旋霍尔效应 量子力学 热力学
作者
Shijing Gong,Cheng Gong,Yuyun Sun,Wen‐Yi Tong,Chun‐Gang Duan,Junhao Chu,Xiang Zhang
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:115 (34): 8511-8516 被引量:208
标识
DOI:10.1073/pnas.1715465115
摘要

Engineering the electronic band structure of material systems enables the unprecedented exploration of new physical properties that are absent in natural or as-synthetic materials. Half metallicity, an intriguing physical property arising from the metallic nature of electrons with singular spin polarization and insulating for oppositely polarized electrons, holds a great potential for a 100% spin-polarized current for high-efficiency spintronics. Conventionally synthesized thin films hardly sustain half metallicity inherited from their 3D counterparts. A fundamental challenge, in systems of reduced dimensions, is the almost inevitable spin-mixed edge or surface states in proximity to the Fermi level. Here, we predict electric field-induced half metallicity in bilayer A-type antiferromagnetic van der Waals crystals (i.e., intralayer ferromagnetism and interlayer antiferromagnetism), by employing density functional theory calculations on vanadium diselenide. Electric fields lift energy levels of the constituent layers in opposite directions, leading to the gradual closure of the gap of singular spin-polarized states and the opening of the gap of the others. We show that a vertical electrical field is a generic and effective way to achieve half metallicity in A-type antiferromagnetic bilayers and realize the spin field effect transistor. The electric field-induced half metallicity represents an appealing route to realize 2D half metals and opens opportunities for nanoscale highly efficient antiferromagnetic spintronics for information processing and storage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kl完成签到,获得积分10
1秒前
CodeCraft应助凡千灵溪采纳,获得10
1秒前
一颗烂番茄完成签到 ,获得积分10
1秒前
我主沉浮发布了新的文献求助10
1秒前
ASUKA完成签到,获得积分10
1秒前
一一完成签到,获得积分10
1秒前
CodeCraft应助娃哈哈哈哈采纳,获得10
1秒前
2秒前
kokodayour完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
沉默的葵阴完成签到,获得积分10
4秒前
Cuddle发布了新的文献求助10
4秒前
特独斩完成签到,获得积分10
4秒前
5秒前
hhgw完成签到 ,获得积分10
5秒前
5秒前
5秒前
冷空气完成签到,获得积分20
6秒前
周媛媛完成签到,获得积分10
7秒前
愉快的芒果完成签到,获得积分10
7秒前
赘婿应助lz采纳,获得10
8秒前
乐乐应助周周的小妤采纳,获得10
8秒前
8秒前
万松辉完成签到,获得积分10
9秒前
天真玉米完成签到,获得积分10
9秒前
顺心人达发布了新的文献求助10
9秒前
潇洒映冬发布了新的文献求助10
9秒前
wangbw完成签到,获得积分10
10秒前
英吉利25发布了新的文献求助20
10秒前
情怀应助风笛采纳,获得10
10秒前
10秒前
粗暴的醉卉完成签到,获得积分10
10秒前
小洲冲冲冲完成签到,获得积分10
10秒前
汉堡包应助受伤幻桃采纳,获得10
11秒前
KX2024完成签到,获得积分10
11秒前
ding7862完成签到,获得积分10
11秒前
DD完成签到,获得积分10
11秒前
Zora发布了新的文献求助10
11秒前
我主沉浮完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5470908
求助须知:如何正确求助?哪些是违规求助? 4573701
关于积分的说明 14340301
捐赠科研通 4500768
什么是DOI,文献DOI怎么找? 2465961
邀请新用户注册赠送积分活动 1454202
关于科研通互助平台的介绍 1428889