e-Graphene: A Computational Platform for the Prediction of Graphene-Based Drug Delivery System by Quantum Genetic Algorithm and Cascade Protocol

石墨烯 计算机科学 级联 算法 药物输送 材料科学 纳米技术 量子 物理 量子力学 化学工程 工程类
作者
Suqing Zheng,Jun Xiong,Lei Wang,Dong Zhai,Yong Xu,Lin Fu
出处
期刊:Frontiers in Chemistry [Frontiers Media]
卷期号:9 被引量:8
标识
DOI:10.3389/fchem.2021.664355
摘要

Graphene, as a novel category of carbon nanomaterials, has attracted a great attention in the field of drug delivery. Due to its large dual surface area, graphene can efficiently load drug molecules with high capacity via non-covalent interaction without chemical modification of the drugs. Hence, it ignites prevalent interests in developing a new graphene/graphene oxide (GO)-based drug delivery system (GDDS). However, current design of GDDS primarily depends on the prior experimental experience with the trial-and-error method. Thus, it is more appealing to theoretically predict possible GDDS candidates before experiments. Toward this end, we propose to fuse quantum genetic algorithm (QGA) and quantum mechanics (QM)/semi-empirical quantum mechanics (SQM)/force field (FF) to globally search the optimal binding interaction between the graphene/GO and drug in a given GDDS and develop a free computational platform “e-Graphene” to automatically predict/screen potential GDDS candidates. To make this platform more pragmatic for the rapid yet relatively accurate prediction, we further propose a cascade protocol via firstly conducting a fast QGA/FF calculation with fine QGA parameters and automatically passing the best chromosomes from QGA/FF to initialize a higher level QGA/SQM or QGA/QM calculation with coarse QGA parameters (e.g., small populations and short evolution generations). By harnessing this platform and protocol, systematic tests on a typical GDDS containing an anticancer drug SN38 illustrate that high fabrication rates of hydroxyl, epoxy, and carboxyl groups on a pristine graphene model will compromise the stability of GDDS, implying that an appropriate functionalization rate is crucial for the delicate balance between the stability and solubility/biocompatibility of GDDS. Moreover, automatic GDDS screen in the DrugBank database is performed and elicits four potential GDDS candidates with enhanced stability than the commonly tested GDDS containing SN38 from the computational point of view. We hope that this work can provide a useful program and protocol for experimental scientists to rationally design/screen promising GDDS candidates prior to experimental tests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助200
1秒前
whatever应助WWwww采纳,获得20
1秒前
2秒前
奈何发布了新的文献求助10
2秒前
时尚的幻灵完成签到,获得积分10
3秒前
3秒前
jiangzong完成签到,获得积分10
3秒前
可爱的函函应助sxw采纳,获得10
3秒前
丘比特应助FeifeiHou采纳,获得50
4秒前
4秒前
zl完成签到 ,获得积分10
4秒前
4秒前
4秒前
锦鲤发布了新的文献求助10
5秒前
Hazel发布了新的文献求助30
5秒前
沉默的瑞宝完成签到 ,获得积分10
5秒前
Yue完成签到,获得积分10
5秒前
cdercder发布了新的文献求助10
5秒前
好的番茄loconte完成签到,获得积分10
7秒前
7秒前
一块闲土豆完成签到,获得积分10
7秒前
Sandy完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
小蘑菇应助粱踏歌采纳,获得10
9秒前
9秒前
传奇3应助顺心的奇异果采纳,获得10
10秒前
wanci应助888采纳,获得10
10秒前
小葱头发布了新的文献求助50
10秒前
10秒前
小蘑菇应助拉拉啊了采纳,获得10
10秒前
羟自由基发布了新的文献求助10
10秒前
田様应助浮浮世世采纳,获得10
10秒前
0x3f发布了新的文献求助10
10秒前
秀的蹇完成签到 ,获得积分20
11秒前
吴端完成签到,获得积分10
11秒前
11秒前
11秒前
李健应助郭婷婷采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5001979
求助须知:如何正确求助?哪些是违规求助? 4247105
关于积分的说明 13232179
捐赠科研通 4045960
什么是DOI,文献DOI怎么找? 2213356
邀请新用户注册赠送积分活动 1223448
关于科研通互助平台的介绍 1143768