已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Optimized Backstepping Consensus Control Using Reinforcement Learning for a Class of Nonlinear Strict-Feedback-Dynamic Multi-Agent Systems

反推 强化学习 控制理论(社会学) 汉密尔顿-雅各比-贝尔曼方程 非线性系统 计算机科学 控制器(灌溉) 数学优化 人工神经网络 最优控制 数学 控制(管理) 自适应控制 人工智能 物理 生物 量子力学 农学
作者
Guoxing Wen,C. L. Philip Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (3): 1524-1536 被引量:64
标识
DOI:10.1109/tnnls.2021.3105548
摘要

In this article, an optimized leader-following consensus control scheme is proposed for the nonlinear strict-feedback-dynamic multi-agent system by learning from the controlling idea of optimized backstepping technique, which designs the virtual and actual controls of backstepping to be the optimized solution of corresponding subsystems so that the entire backstepping control is optimized. Since this control needs to not only ensure the optimizing system performance but also synchronize the multiple system state variables, it is an interesting and challenging topic. In order to achieve this optimized control, the neural network approximation-based reinforcement learning (RL) is performed under critic-actor architecture. In most of the existing RL-based optimal controls, since both the critic and actor RL updating laws are derived from the negative gradient of square of the Hamilton–Jacobi–Bellman (HJB) equation’s approximation, which contains multiple nonlinear terms, their algorithm are inevitably intricate. However, the proposed optimized control derives the RL updating laws from the negative gradient of a simple positive function, which is correlated with the HJB equation; hence, it can be significantly simple in the algorithm. Meanwhile, it can also release two general conditions, known dynamic and persistence excitation, which are required in most of the RL-based optimal controls. Therefore, the proposed optimized scheme can be a natural selection for the high-order nonlinear multi-agent control. Finally, the effectiveness is demonstrated by both theory and simulation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助w1x2123采纳,获得10
刚刚
Efference完成签到 ,获得积分10
刚刚
1秒前
2秒前
king发布了新的文献求助10
2秒前
Amy完成签到 ,获得积分10
3秒前
张三发布了新的文献求助10
3秒前
wodeqiche2007发布了新的文献求助30
4秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
ppp完成签到,获得积分10
11秒前
Ryuki发布了新的文献求助10
11秒前
代扁扁完成签到 ,获得积分10
13秒前
一路有你完成签到 ,获得积分10
15秒前
lllxx47应助金陵笑客采纳,获得10
15秒前
15秒前
林钟完成签到,获得积分10
18秒前
平淡凡柔发布了新的文献求助10
18秒前
lllxx47应助自然月光采纳,获得10
18秒前
18秒前
淡淡蛋挞完成签到,获得积分20
20秒前
无花果应助月流雨采纳,获得30
21秒前
23秒前
w1x2123发布了新的文献求助10
23秒前
Hello应助平淡凡柔采纳,获得10
26秒前
28秒前
鹿冠冠发布了新的文献求助10
28秒前
zzz完成签到 ,获得积分10
28秒前
king发布了新的文献求助10
29秒前
万物生发布了新的文献求助10
29秒前
JM完成签到,获得积分10
31秒前
感动笑发布了新的文献求助30
32秒前
情怀应助随波逐流采纳,获得10
37秒前
量子星尘发布了新的文献求助10
37秒前
Demi_Ming完成签到,获得积分10
37秒前
饱满发布了新的文献求助30
38秒前
41秒前
43秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
Structural Equation Modeling of Multiple Rater Data 700
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3885614
求助须知:如何正确求助?哪些是违规求助? 3427661
关于积分的说明 10756329
捐赠科研通 3152598
什么是DOI,文献DOI怎么找? 1740402
邀请新用户注册赠送积分活动 840237
科研通“疑难数据库(出版商)”最低求助积分说明 785254