高光谱成像
嵌入
阈值
人工智能
模式识别(心理学)
歧管对齐
代表(政治)
计算机科学
非线性降维
维数之咒
拉普拉斯算子
歧管(流体力学)
降维
图像(数学)
数学
计算机视觉
变更检测
数学分析
工程类
政治
法学
机械工程
政治学
作者
Alp Ertürk,Gülşen Taşkın
标识
DOI:10.1109/whispers52202.2021.9484043
摘要
This paper proposes a manifold based approach for change detection in multitemporal hyperspectral images. Manifold representation, using Laplacian Eigenmaps, is applied for dimensionality reduction on stacked temporal datasets and change detection on the reduced datasets. The resulting latent vectors are utilized to cluster the changed vs. unchanged regions. A semi-supervised scheme is also proposed which circumvents the challenging thresholding issue and enables satisfactory binary change detection outputs. The proposed approach is validated on two real bitemporal hyperspectral datasets.
科研通智能强力驱动
Strongly Powered by AbleSci AI