Missing data is poorly handled and reported in prediction model studies using machine learning: a literature review

缺少数据 插补(统计学) 计算机科学 机器学习 人工智能 预测建模 数据挖掘 统计 数学
作者
Steven W J Nijman,Artuur Leeuwenberg,Inés Beekers,I Verkouter,JJL Jacobs,ML Bots,Folkert W. Asselbergs,KGM Moons,Thomas P. A. Debray
出处
期刊:Journal of Clinical Epidemiology [Elsevier BV]
卷期号:142: 218-229 被引量:134
标识
DOI:10.1016/j.jclinepi.2021.11.023
摘要

Missing data is a common problem during the development, evaluation, and implementation of prediction models. Although machine learning (ML) methods are often said to be capable of circumventing missing data, it is unclear how these methods are used in medical research. We aim to find out if and how well prediction model studies using machine learning report on their handling of missing data.We systematically searched the literature on published papers between 2018 and 2019 about primary studies developing and/or validating clinical prediction models using any supervised ML methodology across medical fields. From the retrieved studies information about the amount and nature (e.g. missing completely at random, potential reasons for missingness) of missing data and the way they were handled were extracted.We identified 152 machine learning-based clinical prediction model studies. A substantial amount of these 152 papers did not report anything on missing data (n = 56/152). A majority (n = 96/152) reported details on the handling of missing data (e.g., methods used), though many of these (n = 46/96) did not report the amount of the missingness in the data. In these 96 papers the authors only sometimes reported possible reasons for missingness (n = 7/96) and information about missing data mechanisms (n = 8/96). The most common approach for handling missing data was deletion (n = 65/96), mostly via complete-case analysis (CCA) (n = 43/96). Very few studies used multiple imputation (n = 8/96) or built-in mechanisms such as surrogate splits (n = 7/96) that directly address missing data during the development, validation, or implementation of the prediction model.Though missing values are highly common in any type of medical research and certainly in the research based on routine healthcare data, a majority of the prediction model studies using machine learning does not report sufficient information on the presence and handling of missing data. Strategies in which patient data are simply omitted are unfortunately the most often used methods, even though it is generally advised against and well known that it likely causes bias and loss of analytical power in prediction model development and in the predictive accuracy estimates. Prediction model researchers should be much more aware of alternative methodologies to address missing data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
阳光晓蓝完成签到,获得积分20
5秒前
5秒前
镜中花完成签到 ,获得积分10
6秒前
6秒前
优雅的半梅完成签到 ,获得积分10
7秒前
kunny完成签到 ,获得积分10
9秒前
SciGPT应助gemini0615采纳,获得10
9秒前
无限亦云完成签到,获得积分20
10秒前
还得学啊完成签到,获得积分10
10秒前
火星上的柚子完成签到,获得积分10
11秒前
birdy发布了新的文献求助20
12秒前
两袖清风完成签到 ,获得积分10
14秒前
NexusExplorer应助chenhua5460采纳,获得10
14秒前
圈圈完成签到,获得积分10
16秒前
深情不弱完成签到 ,获得积分10
16秒前
活泼的便当完成签到,获得积分10
16秒前
爆米花应助gemini0615采纳,获得10
17秒前
17秒前
19秒前
光亮的初曼完成签到,获得积分20
21秒前
21秒前
23秒前
满城烟沙完成签到 ,获得积分0
23秒前
tian发布了新的文献求助10
24秒前
小马甲应助虚掩的门采纳,获得10
25秒前
chenhua5460完成签到,获得积分20
25秒前
任康完成签到,获得积分20
26秒前
26秒前
gemini0615发布了新的文献求助10
26秒前
疯狂的元风完成签到 ,获得积分10
26秒前
科研小狗完成签到 ,获得积分10
27秒前
dd36完成签到,获得积分10
27秒前
27秒前
科小白完成签到 ,获得积分10
28秒前
fang完成签到,获得积分10
28秒前
端庄一刀完成签到 ,获得积分10
30秒前
chenhua5460发布了新的文献求助10
30秒前
时尚的秋天完成签到 ,获得积分10
31秒前
暗月皇发布了新的文献求助10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781110
求助须知:如何正确求助?哪些是违规求助? 3326526
关于积分的说明 10227602
捐赠科研通 3041675
什么是DOI,文献DOI怎么找? 1669552
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758734