A soft-electronic sensor network tracks neuromotor development in infants

加速度计 物理医学与康复 医学 运动评估 神经科学 计算机科学 心理学 运动技能 操作系统
作者
Yasser Khan,Zhenan Bao
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:118 (46) 被引量:1
标识
DOI:10.1073/pnas.2116943118
摘要

The brain coordinates the body’s movements through the central nervous system (CNS). Hence, movement behaviors in infants reveal valuable information regarding their developing CNS (1). In infants, spontaneous movements often referred to as general movements (GMs) are an indicator of later neurological deficits (2). GMs are automatic, are complex, occur frequently, and can be observed accurately from early fetal life to 6 mo of age (3). Early observation and assessment of atypical GMs open up the possibility of therapeutic intervention in infants and rely on the neuroplasticity of the brain to avert potential negative outcomes (4, 5). Qualitative and quantitative monitoring of GMs currently requires clinical tests, medical history, video monitoring, and medical experts (6, 7). All these are time and resource intensive; therefore, they are not available to the wider population. In PNAS, Jeong et al. (8) demonstrate an artificial intelligence-enabled soft-electronic sensor network that monitors movements in infants for predicting later neurological deficits (Fig. 1 A ). Fig. 1. Soft-electronic sensor network for early detection of later neurological deficits in infants. ( A ) The sensors are placed on the forehead, chest, and limbs of the infants. These sensors are fabricated using flexible printed circuit boards (PCBs). Electronic components and batteries are assembled and encapsulated inside a waterproof silicone elastomer. Accelerometer and gyroscope data from the left upper arm (LUA), left lower arm (LLA), right upper arm (RUA), and right lower arm (RLA) are then interpreted to acceleration, angular velocity, and normalized activity levels. With machine-learning techniques, these … [↵][1]1To whom correspondence may be addressed. Email: zbao{at}stanford.edu. [1]: #xref-corresp-1-1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热情丸子发布了新的文献求助10
刚刚
可爱的函函应助科研八戒采纳,获得10
刚刚
zhehuai发布了新的文献求助10
1秒前
酷波er应助腼腆的踏歌采纳,获得10
1秒前
3秒前
3秒前
scdd完成签到 ,获得积分10
3秒前
今后应助2306520采纳,获得10
3秒前
4秒前
ZhouYW应助科研通管家采纳,获得10
4秒前
ZhouYW应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
浅尝离白应助科研通管家采纳,获得30
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
5秒前
兮遥遥完成签到 ,获得积分10
5秒前
5秒前
ZhouYW应助科研通管家采纳,获得10
5秒前
汉堡包应助灿烂千阳采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
ZhouYW应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
聪明的谷菱完成签到 ,获得积分10
5秒前
科研通AI5应助晚风采纳,获得10
6秒前
钱钱钱发布了新的文献求助10
7秒前
8秒前
8秒前
Joyj99发布了新的文献求助10
9秒前
9秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
中华人民共和国出版史料 6 1954年 500
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814219
求助须知:如何正确求助?哪些是违规求助? 3358448
关于积分的说明 10394718
捐赠科研通 3075691
什么是DOI,文献DOI怎么找? 1689492
邀请新用户注册赠送积分活动 812972
科研通“疑难数据库(出版商)”最低求助积分说明 767416