The ultrasonic-induced-piezoelectric enhanced photocatalytic performance of ZnO/CdS nanofibers for degradation of bisphenol A

光催化 材料科学 异质结 压电 纳米纤维 降级(电信) 可见光谱 化学工程 双酚A 纳米技术 光电子学 复合材料 催化作用 化学 电子工程 有机化学 环氧树脂 工程类
作者
Chaojun Zhang,Najun Li,Dongyun Chen,Qingfeng Xu,Hua Li,Jinghui He,Jianmei Lu
出处
期刊:Journal of Alloys and Compounds [Elsevier BV]
卷期号:885: 160987-160987 被引量:53
标识
DOI:10.1016/j.jallcom.2021.160987
摘要

• Piezo-photocatalyst of ZnO/CdS heterojunction was fabricated. • A piezoelectric field is produced in ZnO nanofibers by ultrasonic. • The piezoelectric effect can promote the separation of photoinduced charges. • ZnO/CdS exhibited high piezo-photocatalytic efficiency for BPA removal. The ZnO/CdS hierarchical heterojunction was constructed by a convenient method for boosted photocatalytic environmental remediation with the assistance of piezoelectric effect. The separation rate of photoinduced carriers is a significant factor determining the photocatalytic activity. Herein, the nanofibers of ZnO/CdS hierarchical heterojunctions were fabricated, in which the transfer rate of photogenerated carriers was increased by the piezoelectric effect of ZnO. The photogenerated carriers can be generated by CdS under visible light illumination. The piezoelectric field produced by ZnO nanofibers under the ultrasonic can promote the separation of carries in CdS, greatly improving the photocatalytic performance. Under the synergy of ultrasonic and visible light, the optimal ZnO/CdS heterojunction could remove bisphenol A in water completely within 30 min, of which the rate (0.1557 min −1 ) was 11.5 times higher than its photocatalytic rate. This work develops a strategy that coupling piezoelectric effect and visible-light driven photocatalytic by constructing a piezo-photocatalytic heterojunction for promoting the migration and separation of electron-hole pairs and realizing the enhancement of photocatalytic performance. Also, possible mechanism of the piezo-enhanced photocatalytic organic pollutants removal was revealed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
better发布了新的文献求助10
2秒前
taeyeon完成签到,获得积分20
2秒前
NexusExplorer应助Jiro采纳,获得10
2秒前
3秒前
啊噢完成签到,获得积分10
3秒前
4秒前
优秀高丽完成签到 ,获得积分10
4秒前
allshestar完成签到 ,获得积分0
5秒前
wanci应助成就的绮烟采纳,获得10
5秒前
6秒前
7秒前
7秒前
iNk应助言1222采纳,获得20
10秒前
10秒前
10秒前
11秒前
Yuson_L应助安静的卿采纳,获得10
11秒前
11秒前
李天王完成签到,获得积分10
11秒前
英俊的铭应助better采纳,获得10
12秒前
12秒前
12秒前
3366发布了新的文献求助10
13秒前
赘婿应助成就的绮烟采纳,获得10
13秒前
贤惠的饼干完成签到,获得积分10
13秒前
小王发布了新的文献求助10
15秒前
Zinc发布了新的文献求助10
15秒前
聪慧小燕发布了新的文献求助10
16秒前
左眼天堂发布了新的文献求助10
17秒前
20秒前
20秒前
21秒前
Zinc完成签到,获得积分20
22秒前
22秒前
搜集达人应助zz0429采纳,获得100
22秒前
24秒前
赖道之发布了新的文献求助10
24秒前
张春雷发布了新的文献求助10
25秒前
经理发布了新的文献求助10
26秒前
认真的焦发布了新的文献求助10
29秒前
高分求助中
Critical Sports Studies: A Document Reader 600
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827037
求助须知:如何正确求助?哪些是违规求助? 3369276
关于积分的说明 10455331
捐赠科研通 3088912
什么是DOI,文献DOI怎么找? 1699541
邀请新用户注册赠送积分活动 817369
科研通“疑难数据库(出版商)”最低求助积分说明 770208