光热治疗
金黄色葡萄球菌
溴百里酚蓝
细菌生长
纳米技术
细菌
材料科学
化学
生物
色谱法
遗传学
作者
Mengna Dong,Xinyu Sun,Lihua Li,Kunyi He,Jiao Wang,Hui Zhang,Li Wang
标识
DOI:10.1016/j.jcis.2021.11.146
摘要
Early diagnosis of bacterial infection and tracking of treatment effect are of great importance for developing a "sense-and-treat" integrated system. Herein, we developed a bacteria-triggered, portable, wearable and colorimetric film-based band-aid (FBA) for closed-loop monitoring and light-controlled therapy of wound infection. FBA with high photothermal conversion efficiency of 52.56% was prepared by wrapping Bi2S3 nanoflowers (BS NFs) loaded with rhodium nanoparticles (Rh NPs) and bromothymol blue (BTB) into LB agar film, integrating bacteria-triggered color change, photothermal/photodynamic therapy (PTT/PDT) synergistic bactericidal therapy and agar-based band aid in one intelligent system. Initially, FBA effectively simulates the pH sensing mechanism, and monitors the occurrence of bacterial infections within 5 min through color changes of Staphylococcus aureus (S. aureus) from blue to yellow and Escherichia coli (E. coli) from yellow to blue. Additionally, the short-term and controlled antibacterial strategy of "one light dual-mode responses" (photothermal and photodynamic responses) was implemented with the introduce of near-infrared (NIR). Ultimately, the effectiveness of FBA was fully validated in the monitoring and treating of S. aureus-infected mouse wounds. Notably, the designed FBA decisively abandoned off-target side effects maximizing the treatment effect and nakedly tracking therapeutic situation in real time, contributing an effective antibacterial alternative strategy for reducing the use of antibiotics. To the best of our knowledge, such integrated system is still unreported on film-fixed model. In view of the advantages of the low cost and convenience of the simple device, the integrated design is expected to provide a solution for the development of a closed-loop biomedical system combining diagnosis and treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI