Do Not Hesitate to Use Tversky—and Other Hints for Successful Active Analogue Searches with Feature Count Descriptors

化学 计算机科学 集合(抽象数据类型) 相似性(几何) 药效团 模式识别(心理学) 数学 数据挖掘 人工智能 图像(数学) 生物信息学 药物发现 生物 程序设计语言
作者
Dragos Horvath,Gilles Marcou,Alexandre Varnek
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:53 (7): 1543-1562 被引量:24
标识
DOI:10.1021/ci400106g
摘要

This study is an exhaustive analysis of the neighborhood behavior over a large coherent data set (ChEMBL target/ligand pairs of known Ki, for 165 targets with >50 associated ligands each). It focuses on similarity-based virtual screening (SVS) success defined by the ascertained optimality index. This is a weighted compromise between purity and retrieval rate of active hits in the neighborhood of an active query. One key issue addressed here is the impact of Tversky asymmetric weighing of query vs candidate features (represented as integer-value ISIDA colored fragment/pharmacophore triplet count descriptor vectors). The nearly a 3/4 million independent SVS runs showed that Tversky scores with a strong bias in favor of query-specific features are, by far, the most successful and the least failure-prone out of a set of nine other dissimilarity scores. These include classical Tanimoto, which failed to defend its privileged status in practical SVS applications. Tversky performance is not significantly conditioned by tuning of its bias parameter α. Both initial "guesses" of α = 0.9 and 0.7 were more successful than Tanimoto (at its turn, better than Euclid). Tversky was eventually tested in exhaustive similarity searching within the library of 1.6 M commercial + bioactive molecules at http://infochim.u-strasbg.fr/webserv/VSEngine.html , comparing favorably to Tanimoto in terms of "scaffold hopping" propensity. Therefore, it should be used at least as often as, perhaps in parallel to Tanimoto in SVS. Analysis with respect to query subclasses highlighted relationships of query complexity (simply expressed in terms of pharmacophore pattern counts) and/or target nature vs SVS success likelihood. SVS using more complex queries are more robust with respect to the choice of their operational premises (descriptors, metric). Yet, they are best handled by "pro-query" Tversky scores at α > 0.5. Among simpler queries, one may distinguish between "growable" (allowing for active analogs with additional features), and a few "conservative" queries not allowing any growth. These (typically bioactive amine transporter ligands) form the specific application domain of "pro-candidate" biased Tversky scores at α < 0.5.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
刚刚
酷波er应助科研通管家采纳,获得10
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
刚刚
黑猫乾杯应助科研通管家采纳,获得20
刚刚
田様应助科研通管家采纳,获得10
刚刚
orixero应助科研通管家采纳,获得50
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得30
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
1秒前
Zx_1993应助科研通管家采纳,获得60
1秒前
mengtingmei应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
zhonglv7应助害羞的安萱采纳,获得10
2秒前
李爱国应助挹翠揽星采纳,获得10
2秒前
上官若男应助水123采纳,获得10
2秒前
小糊涂仙儿完成签到 ,获得积分10
2秒前
2秒前
kkkwang2完成签到,获得积分10
3秒前
顾矜应助jie采纳,获得10
4秒前
小韩儒儒完成签到,获得积分10
4秒前
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601210
求助须知:如何正确求助?哪些是违规求助? 4686646
关于积分的说明 14845466
捐赠科研通 4679924
什么是DOI,文献DOI怎么找? 2539214
邀请新用户注册赠送积分活动 1506091
关于科研通互助平台的介绍 1471266