0447 ResTNet: A Robust End-to-End Deep Learning Approach to Sleep Staging of Self Applied Somnography Studies

计算机科学 稳健性(进化) 卷积神经网络 人工智能 睡眠(系统调用) 残余物 深度学习 睡眠阶段 脑电图 模式识别(心理学) 端到端原则 眼电学 机器学习 多导睡眠图 眼球运动 医学 算法 基因 操作系统 精神科 化学 生物化学
作者
S.Æ. Jónsson,Eysteinn Gunnlaugsson,E Finssonn,D L Loftsdóttir,G H Ólafsdóttir,Halla Helgadóttir,Jón S. Ágústsson
出处
期刊:Sleep [Oxford University Press]
卷期号:43 (Supplement_1): A171-A171 被引量:2
标识
DOI:10.1093/sleep/zsaa056.444
摘要

Abstract Introduction Sleep stage classifications are of central importance when diagnosing various sleep-related diseases. Performing a full PSG recording can be time-consuming and expensive, and often requires an overnight stay at a sleep clinic. Furthermore, the manual sleep staging process is tedious and subject to scorer variability. Here we present an end-to-end deep learning approach to robustly classify sleep stages from Self Applied Somnography (SAS) studies with frontal EEG and EOG signals. This setup allows patients to self-administer EEG and EOG leads in a home sleep study, which reduces cost and is more convenient for the patients. However, self-administration of the leads increases the risk of loose electrodes, which the algorithm must be robust to. The model structure was inspired by ResNet (He, Zhang, Ren, Sun, 2015), which has been highly successful in image recognition tasks. The ResTNet is comprised of the characteristic Residual blocks with an added Temporal component. Methods The ResTNet classifies sleep stages from the raw signals using convolutional neural network (CNN) layers, which avoids manual feature extraction, residual blocks, and a gated recurrent unit (GRU). This significantly reduces sleep stage prediction time and allows the model to learn more complex relations as the size of the training data increases. The model was developed and validated on over 400 manually scored sleep studies using the novel SAS setup. In developing the model, we used data augmentation techniques to simulate loose electrodes and distorted signals to increase model robustness with regards to missing signals and low quality data. Results The study shows that applying the robust ResTNet model to SAS studies gives accuracy > 0.80 and F1-score > 0.80. It outperforms our previous model which used hand-crafted features and achieves similar performance to a human scorer. Conclusion The ResTNet is fast, gives accurate predictions, and is robust to loose electrodes. The end-to-end model furthermore promises better performance with more data. Combined with the simplicity of the SAS setup, it is an attractive option for large-scale sleep studies. Support This work was supported by the Icelandic Centre for Research RANNÍS (175256-0611).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玄辰完成签到,获得积分10
1秒前
1秒前
无花果应助动听的易巧采纳,获得10
1秒前
2秒前
2秒前
九秋霜完成签到,获得积分10
3秒前
闾丘惜萱完成签到,获得积分10
3秒前
4秒前
4秒前
杨惠文发布了新的文献求助10
5秒前
5秒前
5秒前
horse82发布了新的文献求助10
7秒前
羊白玉完成签到 ,获得积分10
7秒前
一根藤发布了新的文献求助10
8秒前
老板娘完成签到,获得积分10
9秒前
梅子黄时雨完成签到,获得积分10
10秒前
平淡纸飞机完成签到 ,获得积分10
10秒前
共享精神应助王富贵采纳,获得10
10秒前
10秒前
11秒前
12秒前
12秒前
Joyj99完成签到,获得积分10
15秒前
勤劳紫青完成签到 ,获得积分10
16秒前
16秒前
17秒前
wrk完成签到,获得积分10
17秒前
换个昵称发布了新的文献求助10
18秒前
Jonathan完成签到,获得积分10
18秒前
思源应助白桃味的夏采纳,获得10
18秒前
公冶愚志发布了新的文献求助10
21秒前
充电宝应助LL采纳,获得10
21秒前
CJYY完成签到,获得积分10
22秒前
文艺的电源完成签到 ,获得积分10
24秒前
赘婿应助sssyq采纳,获得10
24秒前
SYLH应助归海亦云采纳,获得10
26秒前
酷波er应助能干亦玉采纳,获得10
26秒前
LL完成签到,获得积分10
27秒前
tananna完成签到,获得积分10
28秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843360
求助须知:如何正确求助?哪些是违规求助? 3385634
关于积分的说明 10541521
捐赠科研通 3106291
什么是DOI,文献DOI怎么找? 1710911
邀请新用户注册赠送积分活动 823870
科研通“疑难数据库(出版商)”最低求助积分说明 774351