A Unified Link Prediction Framework for Predicting Arbitrary Relations in Heterogeneous Academic Networks

计算机科学 关系(数据库) 可扩展性 相关性(法律) 度量(数据仓库) 任务(项目管理) 相似性(几何) 路径(计算) 链接(几何体) 数据挖掘 人工智能 理论计算机科学 机器学习 图像(数学) 数据库 经济 管理 程序设计语言 法学 计算机网络 政治学
作者
Meilian Lu,Xudan Wei,Danna Ye,Yinlong Dai
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:7: 124967-124987 被引量:8
标识
DOI:10.1109/access.2019.2939172
摘要

Most of the existing link prediction methods for heterogeneous academic networks can only predict one or two specific relation types rather than arbitrary relation types. Although several recently proposed methods have involved multi-relational prediction problems, they do not comprehensively consider the rich semantic or temporal information of heterogeneous academic networks. Considering that researchers may have diverse requirements for different types of academic resources, in this study, we propose a new unified link prediction framework (UniLPF) for arbitrary types of academic relations. First, a weighted and directed heterogeneous academic network containing rich academic objects and relations is constructed. Then, an automatic meta-path searching method is proposed to extract the meta-paths for arbitrary prediction tasks. Two meta-path based object similarity measures combining temporal information and content relevance are also proposed to measure the features of the meta-paths. Finally, a pervasive link prediction model is built, which can be embodied based on an arbitrarily specified prediction task and the corresponding meta-path features. Extensive experiments for predicting various relation types with practical significance are conducted on a large-scale Microsoft Academic dataset. The experimental results demonstrate that our proposed UniLPF framework can predict arbitrary specified academic relations, and outperforms the comparison methods in terms of F-measure, accuracy, AUC and ROC. In addition, the time scalability experiments prove that UniLPF also achieves good performance for predicting the academic relations over time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ssssssssci完成签到,获得积分10
刚刚
沙青梦发布了新的文献求助10
1秒前
清钰发布了新的文献求助10
1秒前
2秒前
2秒前
斯文败类应助ZhihaoYang采纳,获得10
2秒前
科研助手6应助小周采纳,获得10
3秒前
大气元彤完成签到,获得积分10
3秒前
4秒前
酷波er应助Hcollide采纳,获得10
4秒前
bkagyin应助科研小垃圾采纳,获得10
5秒前
贵金属LiLi发布了新的文献求助10
5秒前
莫西莫西完成签到,获得积分10
5秒前
Lucas应助木鸽子采纳,获得10
6秒前
100发布了新的文献求助10
7秒前
大气元彤发布了新的文献求助20
7秒前
zhouxiuman发布了新的文献求助10
7秒前
wayne发布了新的文献求助10
7秒前
7秒前
彭于彦祖应助纯金金采纳,获得10
8秒前
受伤哈密瓜完成签到 ,获得积分10
8秒前
qdong发布了新的文献求助10
8秒前
yolo完成签到,获得积分10
8秒前
思源应助zzululu2024采纳,获得10
9秒前
所所应助23采纳,获得10
11秒前
隐形曼青应助good233采纳,获得10
12秒前
慕山完成签到,获得积分10
12秒前
12秒前
你说发布了新的文献求助30
14秒前
14秒前
14秒前
15秒前
15秒前
16秒前
小大大小小完成签到,获得积分10
16秒前
16秒前
肥而不腻的羚羊完成签到,获得积分10
16秒前
Marrissa发布了新的文献求助10
17秒前
漂亮水绿完成签到,获得积分10
17秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786934
求助须知:如何正确求助?哪些是违规求助? 3332593
关于积分的说明 10256397
捐赠科研通 3047840
什么是DOI,文献DOI怎么找? 1672734
邀请新用户注册赠送积分活动 801549
科研通“疑难数据库(出版商)”最低求助积分说明 760271