计算机科学
统计能力
R包
贝叶斯概率
复制(统计)
采样(信号处理)
航程(航空)
蒙特卡罗方法
等级制度
样本量测定
统计假设检验
数据挖掘
样品(材料)
统计模型
统计
机器学习
人工智能
数学
工程类
计算科学
化学
滤波器(信号处理)
色谱法
经济
市场经济
计算机视觉
航空航天工程
作者
Rebecca Fisher,Glenn R. Shiell,Rohan J. Sadler,Karina Inostroza,George Shedrawi,Thomas H. Holmes,James McGree
标识
DOI:10.1111/2041-210x.13287
摘要
Abstract Before‐After‐Control‐Impact (BACI) designs are widespread in environmental science, however their implicitly hierarchical nature complicates the evaluation of statistical power. Here, we describe epower , an r package for assessing statistical power of BACI designs. The package uses Bayesian statistical methods via the r ‐package INLA to fit the appropriate hierarchical model to user supplied pilot survey data. A posterior sample is then used to build a Monte Carlo simulation to test statistical power specifically for the Before/After × Control/Impact interaction term in the BACI model. Power can be assessed for any number of user‐specified effect sizes for the existing design, or across a range of levels of replication for any part of the sampling design hierarchy. The package offers a user friendly robust approach for assessing statistical power of BACI designs whilst accounting for uncertainty in parameter values within a fully generalized framework.
科研通智能强力驱动
Strongly Powered by AbleSci AI