Dentronics: Towards robotics and artificial intelligence in dentistry

人工智能 机器人学 自动化 背景(考古学) 计算机科学 机器人 机器学习 人工智能应用 牙科 工程类 医学 机械工程 生物 古生物学
作者
Jasmin Grischke,Lars Johannsmeier,Lukas Eich,Leif Griga,Sami Haddadin
出处
期刊:Dental Materials [Elsevier BV]
卷期号:36 (6): 765-778 被引量:152
标识
DOI:10.1016/j.dental.2020.03.021
摘要

This paper provides an overview of existing applications and concepts of robotic systems and artificial intelligence in dentistry. This review aims to provide the community with novel inputs and argues for an increased utilization of these recent technological developments, referred to as Dentronics, in order to advance dentistry.First, background on developments in robotics, artificial intelligence (AI) and machine learning (ML) are reviewed that may enable novel assistive applications in dentistry (Sec A). Second, a systematic technology review that evaluates existing state-of-the-art applications in AI, ML and robotics in the context of dentistry is presented (Sec B).A systematic literature research in pubmed yielded in a total of 558 results. 41 studies related to ML, 53 studies related to AI and 49 original research papers on robotics application in dentistry were included. ML and AI have been applied in dental research to analyze large amounts of data to eventually support dental decision making, diagnosis, prognosis and treatment planning with the help of data-driven analysis algorithms based on machine learning. So far, only few robotic applications have made it to reality, mostly restricted to pilot use cases.The authors believe that dentistry can greatly benefit from the current rise of digital human-centered automation and be transformed towards a new robotic, ML and AI-enabled era. In the future, Dentronics will enhance reliability, reproducibility, accuracy and efficiency in dentistry through the democratized use of modern dental technologies, such as medical robot systems and specialized artificial intelligence. Dentronics will increase our understanding of disease pathogenesis, improve risk-assessment-strategies, diagnosis, disease prediction and finally lead to better treatment outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
hyshen发布了新的文献求助10
2秒前
斯文败类应助科研通管家采纳,获得10
3秒前
归尘应助科研通管家采纳,获得100
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
3秒前
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
4秒前
666发布了新的文献求助10
5秒前
Suntyu完成签到,获得积分10
7秒前
灰化土完成签到,获得积分10
7秒前
7秒前
搜集达人应助黎小静采纳,获得10
8秒前
pumpkin发布了新的文献求助10
8秒前
小晖晖完成签到,获得积分10
8秒前
科研通AI2S应助Yi采纳,获得10
10秒前
orixero应助pumpkin采纳,获得10
12秒前
算了飞发布了新的文献求助10
12秒前
ldmr发布了新的文献求助10
12秒前
Yiy完成签到 ,获得积分10
13秒前
JamesPei应助zzk采纳,获得10
14秒前
木林森林木完成签到 ,获得积分10
14秒前
16秒前
Bismarck发布了新的文献求助10
17秒前
ldmr完成签到,获得积分10
19秒前
SWEETYXY发布了新的文献求助10
20秒前
黎小静发布了新的文献求助10
22秒前
27秒前
31秒前
34秒前
Keyl完成签到,获得积分10
34秒前
嘿嘿关注了科研通微信公众号
37秒前
万能图书馆应助lllla采纳,获得10
43秒前
43秒前
daqisong完成签到,获得积分10
44秒前
Lingyu发布了新的文献求助10
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778573
求助须知:如何正确求助?哪些是违规求助? 3324177
关于积分的说明 10217311
捐赠科研通 3039383
什么是DOI,文献DOI怎么找? 1668032
邀请新用户注册赠送积分活动 798482
科研通“疑难数据库(出版商)”最低求助积分说明 758385