相对湿度
腐蚀
点蚀
湿度
冶金
材料科学
体积热力学
气象学
热力学
物理
作者
Jayendran Srinivasan,Timothy D. Weirich,G. A. Marino,Anthony Annerino,Jason Taylor,Philip Noell,James Griego,Rebecca Schaller,Charles R. Bryan,Jenifer Locke,Eric John Schindelholz
标识
DOI:10.1149/1945-7111/abdc75
摘要
Ground 304 stainless steel (SS) samples were exposed to sea salt particles at 35 °C and two relative humidity (RH) levels for durations ranging from 1 week to 2 years. For all exposure times, pit number density and total pit volume at 40% RH were observed to be considerably greater than those at 76% RH. Statistical analysis of distributions of pit populations for both RH conditions showed that pit number density and total pit volume increased rapidly at first but slowed as exposure time increased. Cross-hatched features were observed in the 40% RH pits while ellipsoidal, faceted pits were observed at 76% RH. Optical profilometry indicated that most pits were not hemispherical. X-ray tomography provided evidence of undercutting and fissures. Piecewise curve fitting modeled the 40% RH data closely, predicting that corrosion damage would eventually plateau. However, a similar treatment of the 76% RH data suggested that corrosion damage would continuously increase, which implied that the piecewise power-law fit was limited in its ability to model atmospheric corrosion generally. Based on these observations, the operative mechanisms determining long-term corrosion behavior were hypothesized to be different depending on the RH of exposure.
科研通智能强力驱动
Strongly Powered by AbleSci AI