亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning of lumbar spine X-ray for osteopenia and osteoporosis screening: A multicenter retrospective cohort study

骨量减少 医学 骨质疏松症 腰椎 回顾性队列研究 骨矿物 队列研究 腰椎 放射科 队列 内科学 外科
作者
Bin Zhang,Keyan Yu,Zhenyuan Ning,Ke Wang,Yuhao Dong,Xian Liu,Shuxue Liu,Jian Wang,Cuiling Zhu,Qinqin Yu,Yuwen Duan,Siying Lv,Xintao Zhang,Yanjun Chen,Xiaojia Wang,Jie Shen,Jia Peng,Qiuying Chen,Yu Zhang,Xiaodong Zhang
出处
期刊:Bone [Elsevier BV]
卷期号:140: 115561-115561 被引量:130
标识
DOI:10.1016/j.bone.2020.115561
摘要

Osteoporosis is a prevalent but underdiagnosed condition. As compared to dual-energy X-ray absorptiometry (DXA) measures, we aimed to develop a deep convolutional neural network (DCNN) model to classify osteopenia and osteoporosis with the use of lumbar spine X-ray images. Herein, we developed the DCNN models based on the training dataset, which comprising 1616 lumbar spine X-ray images from 808 postmenopausal women (aged 50 to 92 years). DXA-derived bone mineral density (BMD) measures were used as the reference standard. We categorized patients into three groups according to DXA BMD T-score: normal (T ≥ −1.0), osteopenia (−2.5 < T < −1.0), and osteoporosis (T ≤ −2.5). T-scores were calculated by using the BMD dataset of young Chinese female aged 20–40 years as a reference. A 3-class DCNN model was trained to classify normal BMD, osteoporosis, and osteopenia. Model performance was tested in a validation dataset (204 images from 102 patients) and two test datasets (396 images from 198 patients and 348 images from 147 patients respectively). Model performance was assessed by the receiver operating characteristic (ROC) curve analysis. The results showed that in the test dataset 1, the model diagnosing osteoporosis achieved an AUC of 0.767 (95% confidence interval [CI]: 0.701–0.824) with sensitivity of 73.7% (95% CI: 62.3–83.1), the model diagnosing osteopenia achieved an AUC of 0.787 (95% CI: 0.723–0.842) with sensitivity of 81.8% (95% CI: 67.3–91.8); In the test dataset 2, the model diagnosing osteoporosis yielded an AUC of 0.726 (95% CI: 0.646–0.796) with sensitivity of 68.4% (95% CI: 54.8–80.1), the model diagnosing osteopenia yielded an AUC of 0.810 (95% CI, 0.737–0.870) with sensitivity of 85.3% (95% CI, 68.9–95.0). Accordingly, a deep learning diagnostic network may have the potential in screening osteoporosis and osteopenia based on lumbar spine radiographs. However, further studies are necessary to verify and improve the diagnostic performance of DCNN models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
10秒前
野性的枫发布了新的文献求助10
23秒前
orixero应助111采纳,获得10
43秒前
科研通AI2S应助111采纳,获得10
43秒前
Lian完成签到,获得积分10
1分钟前
小白t73完成签到 ,获得积分10
1分钟前
小呵点完成签到 ,获得积分10
2分钟前
热情笑旋完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
ccpumpkin完成签到 ,获得积分10
3分钟前
Dr_Yang发布了新的文献求助10
3分钟前
玖生发布了新的文献求助10
3分钟前
Dr_Yang完成签到,获得积分10
3分钟前
可靠诗筠完成签到 ,获得积分10
4分钟前
开心每一天完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
玖生发布了新的文献求助10
4分钟前
4分钟前
ChenWei发布了新的文献求助10
4分钟前
CodeCraft应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
玖生发布了新的文献求助10
5分钟前
6分钟前
QQQ发布了新的文献求助10
6分钟前
zzzz完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
玖生发布了新的文献求助10
7分钟前
研友_VZG7GZ应助美满夏寒采纳,获得10
7分钟前
TwentyNine完成签到,获得积分10
8分钟前
8分钟前
8分钟前
美满夏寒发布了新的文献求助10
8分钟前
Jason发布了新的文献求助10
8分钟前
谷子完成签到 ,获得积分10
8分钟前
bkagyin应助科研通管家采纳,获得10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Irregular Migration in Southeast Asia: Contemporary Barriers to Regularization and Healthcare 2000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5053634
求助须知:如何正确求助?哪些是违规求助? 4280252
关于积分的说明 13340757
捐赠科研通 4096094
什么是DOI,文献DOI怎么找? 2242107
邀请新用户注册赠送积分活动 1248361
关于科研通互助平台的介绍 1177870