清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An approach to optimize cooling channel parameters of Low pressure Die casting process for reducing shrinkage porosity in Aluminium alloy wheels

收缩率 多孔性 压铸 铸造 材料科学 合金 模具(集成电路) 过程(计算) 机械工程 流量(数学) 铝合金 铸造厂 冶金 复合材料 计算机科学 工程类 机械 物理 操作系统
作者
Manthan Dhisale,Jitesh Vasavada,Asim Tewari
出处
期刊:Materials Today: Proceedings [Elsevier]
卷期号:62: 3189-3196 被引量:3
标识
DOI:10.1016/j.matpr.2022.03.478
摘要

A majority of automobile wheel market is occupied by aluminium alloys because of numerous advantages, one of which includes light weight. Most of these Aluminium alloy wheels are cast using Low Pressure Die Casting process. However this process results in several defects in the wheel rims, majority of which are due to shrinkage porosity. The presence of such defects reduce the fatigue life of wheels as they act as high-stress zones. Hence, it is paramount to understand the possible defects with their location and intensity and minimize it. One possible way is to perform a multi-physics simulation of filling and solidification process and estimate the defect location and intensity. However minimizing these defects, calls for a highly non-linear space Multi-disciplinary Design Optimization (MDO) problem. Existing techniques such as full factorial analysis may not be computationally efficient when it comes to contribution from large number of parameters. Shrinkage porosity is affected by various process parameters like cooling channels flow rate, delay and duration of flow, mold pre-heat temperatures, pressure cycle of molten metal, alloy composition, etc. The current research focuses on development of an efficient approach to solve a MDO problem in LPDC process of AlSi7Mg0.3 alloy wheel rim. The work specifically deals with minimizing the shrinkage porosity by optimizing the cooling channel parameters like delay and duration. This can also be extended for other parameters like flow rates, pre-heat temperatures, pressure cycle, etc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
电池菜鸟完成签到,获得积分20
5秒前
9秒前
电池菜鸟发布了新的文献求助10
10秒前
zjy发布了新的文献求助10
12秒前
华仔应助zjy采纳,获得10
20秒前
科研通AI2S应助定西采纳,获得10
32秒前
wang完成签到,获得积分0
35秒前
个性归尘应助科研通管家采纳,获得10
36秒前
个性归尘应助科研通管家采纳,获得10
36秒前
田様应助科研通管家采纳,获得10
36秒前
39秒前
mathmotive完成签到,获得积分10
55秒前
六一完成签到 ,获得积分10
56秒前
yzhilson完成签到 ,获得积分10
1分钟前
红箭烟雨完成签到,获得积分10
1分钟前
xdd完成签到 ,获得积分10
1分钟前
1分钟前
zjy完成签到,获得积分10
1分钟前
zjy发布了新的文献求助10
2分钟前
2分钟前
酷波er应助zjy采纳,获得10
2分钟前
Shandongdaxiu完成签到 ,获得积分10
2分钟前
个性归尘应助科研通管家采纳,获得10
2分钟前
完美世界应助科研通管家采纳,获得10
2分钟前
龙猫爱看书完成签到,获得积分10
2分钟前
科研通AI5应助孝顺的新之采纳,获得10
3分钟前
南汉高贵的陈皮完成签到 ,获得积分10
3分钟前
Air完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
bkagyin应助xun采纳,获得10
3分钟前
JrPaleo101完成签到,获得积分10
4分钟前
xun完成签到,获得积分20
4分钟前
4分钟前
xun发布了新的文献求助10
4分钟前
4分钟前
lanxinge完成签到 ,获得积分10
4分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Study of enhancing employee engagement at workplace by adopting internet of things 200
Minimum Bar Spacing as a Function of Bond and Shear Strength 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837511
求助须知:如何正确求助?哪些是违规求助? 3379623
关于积分的说明 10509995
捐赠科研通 3099208
什么是DOI,文献DOI怎么找? 1707001
邀请新用户注册赠送积分活动 821368
科研通“疑难数据库(出版商)”最低求助积分说明 772597