Unsupervised domain selective graph convolutional network for preoperative prediction of lymph node metastasis in gastric cancer

计算机科学 卷积神经网络 人工智能 分类器(UML) 模式识别(心理学) 学习迁移 特征(语言学) 图形 特征学习 语言学 理论计算机科学 哲学
作者
Yongtao Zhang,Ning Yuan,Zhiguo Zhang,Jie Du,Tianfu Wang,Bing Liu,Aocai Yang,Kuan Lv,Guolin Ma,Baiying Lei
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:79: 102467-102467 被引量:12
标识
DOI:10.1016/j.media.2022.102467
摘要

Preoperative prediction of lymph node (LN) metastasis based on computed tomography (CT) scans is an important task in gastric cancer, but few machine learning-based techniques have been proposed. While multi-center datasets increase sample size and representation ability, they suffer from inter-center heterogeneity. To tackle the above issue, we propose a novel multi-source domain adaptation framework for this diagnosis task, which not only considers domain-invariant and domain-specific features, but also achieves the imbalanced knowledge transfer and class-aware feature alignment across domains. First, we develop a 3D improved feature pyramidal network (i.e., 3D IFPN) to extract common multi-level features from the high-resolution 3D CT images, where a feature dynamic transfer (FDT) module can promote the network's ability to recognize the small target (i.e., LN). Then, we design an unsupervised domain selective graph convolutional network (i.e., UDS-GCN), which mainly includes three types of components: domain-specific feature extractor, domain selector and class-aware GCN classifier. Specifically, multiple domain-specific feature extractors are employed for learning domain-specific features from the common multi-level features generated by the 3D IFPN. A domain selector via the optimal transport (OT) theory is designed for controlling the amount of knowledge transferred from source domains to the target domain. A class-aware GCN classifier is developed to explicitly enhance/weaken the intra-class/inter-class similarity of all sample pairs across domains. To optimize UDS-GCN, the domain selector and the class-aware GCN classifier provide reliable target pseudo-labels to each other in the iterative process by collaborative learning. The extensive experiments are conducted on an in-house CT image dataset collected from four medical centers to demonstrate the efficacy of our proposed method. Experimental results verify that the proposed method boosts LN metastasis diagnosis performance and outperforms state-of-the-art methods. Our code is publically available at https://github.com/infinite-tao/LN_MSDA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助石夜一觞采纳,获得10
刚刚
HonamC完成签到,获得积分10
1秒前
热心柚子完成签到,获得积分10
1秒前
1秒前
2秒前
cc完成签到,获得积分10
3秒前
17完成签到,获得积分20
3秒前
4秒前
4秒前
111完成签到 ,获得积分10
4秒前
WANG发布了新的文献求助10
4秒前
5秒前
斩封完成签到,获得积分10
5秒前
yfy完成签到 ,获得积分10
5秒前
6秒前
完美芹发布了新的文献求助10
6秒前
珊珊4532完成签到 ,获得积分10
6秒前
奈何桥上抬花轿完成签到,获得积分20
6秒前
胡占东发布了新的文献求助10
6秒前
汉堡包应助LLL采纳,获得10
7秒前
cc完成签到,获得积分20
7秒前
7秒前
7秒前
7秒前
8秒前
网上飞完成签到,获得积分10
8秒前
8秒前
9秒前
星辰大海应助17采纳,获得10
9秒前
畅快芝麻发布了新的文献求助10
9秒前
哈哈发布了新的文献求助10
9秒前
斗牛的番茄完成签到 ,获得积分10
9秒前
科研通AI5应助周周采纳,获得10
9秒前
冷静的静蕾完成签到,获得积分10
10秒前
10秒前
yc发布了新的文献求助10
10秒前
10秒前
10秒前
Rose_Yang发布了新的文献求助10
11秒前
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796339
求助须知:如何正确求助?哪些是违规求助? 3341373
关于积分的说明 10306159
捐赠科研通 3057930
什么是DOI,文献DOI怎么找? 1677992
邀请新用户注册赠送积分活动 805746
科研通“疑难数据库(出版商)”最低求助积分说明 762775