GPX4
磷脂过氧化氢谷胱甘肽过氧化物酶
背景(考古学)
点突变
错义突变
生物化学
酶
突变
基因
化学
生物
遗传学
细胞生物学
谷胱甘肽
谷胱甘肽过氧化物酶
古生物学
作者
Hengrui Liu,F. Forouhar,Tobias Seibt,Russell P. Saneto,Kristen Wigby,Jennifer Friedman,Xin Xia,Mikhail S. Shchepinov,Sanath Kumar Ramesh,Marcus Conrad,Brent R. Stockwell
标识
DOI:10.1038/s41589-021-00915-2
摘要
Glutathione peroxidase 4 (GPX4), as the only enzyme in mammals capable of reducing esterified phospholipid hydroperoxides within a cellular context, protects cells from ferroptosis. We identified a homozygous point mutation in the GPX4 gene, resulting in an R152H coding mutation, in three patients with Sedaghatian-type spondylometaphyseal dysplasia. Using structure-based analyses and cell models, including patient fibroblasts, of this variant, we found that the missense variant destabilized a critical loop, which disrupted the active site and caused a substantial loss of enzymatic function. We also found that the R152H variant of GPX4 is less susceptible to degradation, revealing the degradation mechanism of the GPX4 protein. Proof-of-concept therapeutic treatments, which overcome the impaired R152H GPX4 activity, including selenium supplementation, selective antioxidants and a deuterated polyunsaturated fatty acid were identified. In addition to revealing a general approach to investigating rare genetic diseases, we demonstrate the biochemical foundations of therapeutic strategies targeting GPX4.
科研通智能强力驱动
Strongly Powered by AbleSci AI