Thermodynamic effects on single cavitation bubble dynamics under various ambient temperature conditions

气泡 空化 环境压力 机械 半径 物理 振荡(细胞信号) 热力学 喷射(流体) 临界半径 化学 球体 生物化学 计算机安全 天文 计算机科学
作者
Thanh-Hoang Phan,Ebrahim Kadivar,Van‐Tu Nguyen,Ould el Moctar,Warn-Gyu Park
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:34 (2) 被引量:71
标识
DOI:10.1063/5.0076913
摘要

Thermodynamic characteristics and their effects on single cavitation bubble dynamics are important to elucidate the physical behaviors of cavitation phenomena. In this study, experimental and numerical methods were utilized to explore the thermodynamic effects on single cavitation bubble dynamics under various ambient temperature conditions. A series of experiments was performed to generate a single cavitation bubble at ambient temperatures between 20 and 80 °C using a laser-induced method and a high-speed camera to observe the dynamic behaviors of bubbles. By increasing the ambient temperature, a nonspherical bubble shape with a jet flow at the bubble rebound stage was observed. Next, the numerical simulation results in terms of the bubble radius and bubble shape were validated with the corresponding experimental data. Generally, the results exhibited reasonable agreement, particularly at the later collapse and rebound stages. Critical hydrodynamic and thermodynamic mechanisms over multiple oscillation stages at different ambient temperatures were analyzed. The bubble behaviors and their intensities were numerically quantified with respect to the bubble radius, collapsing time, internal pressure, internal temperature, and phase transition rate parameters. The results showed that the maximum bubble radius, first minimum bubble radius, and collapsing time increased with an increase in the ambient temperature. Nevertheless, the peak values of the internal pressure and internal temperature decreased with an increase in the ambient temperature. Generally, the bubble collapsed less violently at high temperatures than at low temperatures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ttttt发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
无花果应助mym采纳,获得10
2秒前
2秒前
喵总完成签到,获得积分10
2秒前
INNER_PEACE完成签到,获得积分10
2秒前
隐形曼青应助昵称11采纳,获得10
2秒前
CY发布了新的文献求助10
3秒前
3秒前
4秒前
liyu发布了新的文献求助10
4秒前
3d54s2完成签到,获得积分10
4秒前
4秒前
圆仔完成签到,获得积分10
4秒前
舒心聪展完成签到,获得积分10
4秒前
碎影关注了科研通微信公众号
6秒前
俊俊完成签到,获得积分10
7秒前
酷波er应助yang采纳,获得10
7秒前
7秒前
WGY发布了新的文献求助30
8秒前
8秒前
8秒前
8秒前
自觉大叔发布了新的文献求助10
8秒前
我叫XXXXXXX发布了新的文献求助10
9秒前
Hello应助CY采纳,获得10
9秒前
123nkjx发布了新的文献求助10
9秒前
9秒前
美好问旋发布了新的文献求助10
9秒前
圆仔发布了新的文献求助10
10秒前
11秒前
无语的丹寒完成签到,获得积分20
11秒前
Owen应助什么奶酪橘汁采纳,获得10
11秒前
木柟完成签到,获得积分10
12秒前
12秒前
华仔应助ff采纳,获得10
12秒前
英姑应助ff采纳,获得10
12秒前
852应助ff采纳,获得10
12秒前
充电宝应助ff采纳,获得10
12秒前
慕青应助ff采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648816
求助须知:如何正确求助?哪些是违规求助? 4776730
关于积分的说明 15045622
捐赠科研通 4807687
什么是DOI,文献DOI怎么找? 2571022
邀请新用户注册赠送积分活动 1527707
关于科研通互助平台的介绍 1486609