Thermodynamic effects on single cavitation bubble dynamics under various ambient temperature conditions

气泡 空化 环境压力 机械 半径 物理 振荡(细胞信号) 热力学 喷射(流体) 临界半径 化学 球体 天文 计算机安全 计算机科学 生物化学
作者
Thanh-Hoang Phan,Ebrahim Kadivar,Van‐Tu Nguyen,Ould el Moctar,Warn-Gyu Park
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:34 (2) 被引量:53
标识
DOI:10.1063/5.0076913
摘要

Thermodynamic characteristics and their effects on single cavitation bubble dynamics are important to elucidate the physical behaviors of cavitation phenomena. In this study, experimental and numerical methods were utilized to explore the thermodynamic effects on single cavitation bubble dynamics under various ambient temperature conditions. A series of experiments was performed to generate a single cavitation bubble at ambient temperatures between 20 and 80 °C using a laser-induced method and a high-speed camera to observe the dynamic behaviors of bubbles. By increasing the ambient temperature, a nonspherical bubble shape with a jet flow at the bubble rebound stage was observed. Next, the numerical simulation results in terms of the bubble radius and bubble shape were validated with the corresponding experimental data. Generally, the results exhibited reasonable agreement, particularly at the later collapse and rebound stages. Critical hydrodynamic and thermodynamic mechanisms over multiple oscillation stages at different ambient temperatures were analyzed. The bubble behaviors and their intensities were numerically quantified with respect to the bubble radius, collapsing time, internal pressure, internal temperature, and phase transition rate parameters. The results showed that the maximum bubble radius, first minimum bubble radius, and collapsing time increased with an increase in the ambient temperature. Nevertheless, the peak values of the internal pressure and internal temperature decreased with an increase in the ambient temperature. Generally, the bubble collapsed less violently at high temperatures than at low temperatures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
winifred完成签到 ,获得积分10
3秒前
老鼠耗子完成签到,获得积分10
4秒前
5秒前
lingfeng888888完成签到,获得积分10
5秒前
想要赚大钱完成签到,获得积分10
6秒前
JamesPei应助猪猪女孩采纳,获得30
9秒前
赞zan发布了新的文献求助10
10秒前
彭于晏应助Galaxee采纳,获得10
11秒前
锅炉完成签到,获得积分10
14秒前
赵萌完成签到,获得积分10
14秒前
科研通AI2S应助东伯雪鹰采纳,获得10
17秒前
香蕉觅云应助东伯雪鹰采纳,获得10
17秒前
星辰大海应助东伯雪鹰采纳,获得10
17秒前
搜集达人应助东伯雪鹰采纳,获得10
17秒前
17秒前
独特的尔风完成签到,获得积分10
17秒前
18秒前
xiaowang应助Epiphany采纳,获得10
18秒前
20秒前
狗子爱吃桃桃完成签到 ,获得积分10
21秒前
Galaxee发布了新的文献求助10
23秒前
23秒前
落后友灵发布了新的文献求助10
23秒前
lh发布了新的文献求助10
25秒前
愉快的楷瑞完成签到,获得积分10
26秒前
27秒前
二巨头完成签到,获得积分10
28秒前
思源应助赞zan采纳,获得10
32秒前
young完成签到,获得积分10
35秒前
38秒前
stuuuuuuuuuuudy完成签到 ,获得积分10
41秒前
黄饱饱发布了新的文献求助10
41秒前
vc完成签到,获得积分10
46秒前
黄饱饱完成签到,获得积分10
47秒前
49秒前
Zack发布了新的文献求助10
55秒前
liancheng完成签到,获得积分10
1分钟前
zhaoxuelian完成签到,获得积分10
1分钟前
洪亮完成签到,获得积分0
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
基于CZT探测器的128通道能量时间前端读出ASIC设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777104
求助须知:如何正确求助?哪些是违规求助? 3322512
关于积分的说明 10210474
捐赠科研通 3037840
什么是DOI,文献DOI怎么找? 1666936
邀请新用户注册赠送积分活动 797849
科研通“疑难数据库(出版商)”最低求助积分说明 758044