Spatially adaptive blind deconvolution methods for optical coherence tomography

去模糊 反褶积 盲反褶积 点扩散函数 Tikhonov正则化 自动对焦 图像复原 正规化(语言学) 计算机科学 光学相干层析成像 算法 小波 人工智能 全变差去噪 计算机视觉 数学 图像处理 反问题 光学(聚焦) 光学 图像(数学) 物理 数学分析
作者
Wenxue Dong,Yina Du,Jianbin Xu,Feng Dong,Shangjie Ren
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:147: 105650-105650 被引量:1
标识
DOI:10.1016/j.compbiomed.2022.105650
摘要

Optical coherence tomography (OCT) is a powerful noninvasive imaging technique for detecting microvascular abnormalities. Following optical imaging principles, an OCT image will be blurred in the out-of-focus domain. Digital deconvolution is a commonly used method for image deblurring. However, the accuracy of traditional digital deconvolution methods, e.g., the Richardson-Lucy method, depends on the prior knowledge of the point spread function (PSF), which varies with the imaging depth and is difficult to determine. In this paper, a spatially adaptive blind deconvolution framework is proposed for recovering clear OCT images from blurred images without a known PSF. First, a depth-dependent PSF is derived from the Gaussian beam model. Second, the blind deconvolution problem is formalized as a regularized energy minimization problem using the least squares method. Third, the clear image and imaging depth are simultaneously recovered from blurry images using an alternating optimization method. To improve the computational efficiency of the proposed method, an accelerated alternating optimization method is proposed based on the convolution theorem and Fourier transform. The proposed method is numerically implemented with various regularization terms, including total variation, Tikhonov, and l1 norm terms. The proposed method is used to deblur synthetic and experimental OCT images. The influence of the regularization term on the deblurring performance is discussed. The results show that the proposed method can accurately deblur OCT images. The proposed acceleration method can significantly improve the computational efficiency of blind demodulation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热心市民小红花应助98采纳,获得10
刚刚
2秒前
2秒前
李爱国应助ruanyh采纳,获得10
2秒前
hhh完成签到,获得积分10
3秒前
4秒前
5秒前
xmh发布了新的文献求助10
6秒前
李教授发布了新的文献求助50
6秒前
Drounp发布了新的文献求助10
7秒前
7秒前
杨杨杨完成签到,获得积分10
9秒前
fan完成签到,获得积分10
11秒前
脑洞疼应助xmh采纳,获得10
12秒前
早睡完成签到,获得积分10
13秒前
认真的砖头完成签到 ,获得积分10
13秒前
14秒前
JOJO发布了新的文献求助10
14秒前
FashionBoy应助wanghq采纳,获得10
15秒前
科目三应助娇气的芷巧采纳,获得10
16秒前
18秒前
取月色二两完成签到,获得积分10
19秒前
zephyrforzhou完成签到,获得积分10
19秒前
斯文败类应助如初采纳,获得20
19秒前
jqk完成签到,获得积分10
20秒前
qi完成签到,获得积分10
22秒前
嗯哼发布了新的文献求助10
23秒前
24秒前
田様应助JOJO采纳,获得10
25秒前
ding应助眼睛大亦玉采纳,获得10
25秒前
WM发布了新的文献求助10
26秒前
ruanyh发布了新的文献求助10
28秒前
zyzraylene完成签到,获得积分10
29秒前
楚子关发布了新的文献求助20
31秒前
31秒前
合适的半青完成签到,获得积分10
32秒前
34秒前
aiming发布了新的文献求助30
34秒前
科研通AI5应助WBC采纳,获得10
34秒前
ruanyh完成签到,获得积分10
35秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842887
求助须知:如何正确求助?哪些是违规求助? 3384898
关于积分的说明 10538020
捐赠科研通 3105474
什么是DOI,文献DOI怎么找? 1710326
邀请新用户注册赠送积分活动 823598
科研通“疑难数据库(出版商)”最低求助积分说明 774149