已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Magnetic Biohybrid Microrobot Multimers Based on Chlorella Cells for Enhanced Targeted Drug Delivery

纳米机器人学 材料科学 纳米技术 靶向给药 药物输送 制作 阿霉素 生物 医学 替代医学 病理 化疗 遗传学
作者
De Gong,Nuoer Celi,Deyuan Zhang,Jun Cai
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (5): 6320-6330 被引量:117
标识
DOI:10.1021/acsami.1c16859
摘要

Magnetic micro-/nanorobots have been regarded as a promising platform for targeted drug delivery, and tremendous strategies have been developed in recent years. However, realizing precise and efficient drug delivery in vivo still remains challenging, in which the versatile integration of good biocompatibility and reconfiguration is the main obstacle for micro-/nanorobots. Herein, we proposed a novel strategy of magnetic biohybrid microrobot multimers (BMMs) based on Chlorella (Ch.) and demonstrated their great potential for targeted drug delivery. The spherical Ch. cells around 3-5 μm were magnetized with Fe3O4 to fabricate biohybrid microrobots and then loaded with doxorubicin (DOX). Using magnetic dipolar interactions, the microrobot units could reconfigure into chain-like BMMs as tiny dimers, trimers, and so forth via attraction-induced self-assembly and disassemble reversibly via repulsion. The BMMs exhibited diverse swimming modes including rolling and tumbling with high maneuverability, and the rolling dimer's velocity could reach 107.6 μm/s (∼18 body length/s) under a 70 Gs precessing magnetic field. Furthermore, the BMMs exhibited low cell toxicity, high DOX loading capacity, and pH-triggered drug release, which were verified by chemotherapy experiments toward HeLa cancer cells. Due to the remarkable versatility and facile fabrication, the BMMs demonstrate great potential for targeted anticancer therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助lzw采纳,获得10
2秒前
viviannne完成签到,获得积分20
2秒前
哇塞的完成签到,获得积分10
3秒前
3秒前
6秒前
迟迟不吃吃完成签到 ,获得积分10
7秒前
CipherSage应助道为采纳,获得10
8秒前
GGBOND发布了新的文献求助10
9秒前
11秒前
lym发布了新的文献求助10
11秒前
12秒前
脑洞疼应助Albert_Li采纳,获得10
13秒前
领导范儿应助老实的绮琴采纳,获得10
15秒前
鸿渊完成签到,获得积分10
15秒前
16秒前
葛洪成发布了新的文献求助10
16秒前
17秒前
GL发布了新的文献求助10
18秒前
华仔应助lym采纳,获得10
19秒前
20秒前
20秒前
23秒前
23秒前
24秒前
皆可发布了新的文献求助10
25秒前
科研通AI6应助GL采纳,获得10
26秒前
30秒前
30秒前
lgq12697应助Linda采纳,获得80
33秒前
33秒前
34秒前
酷波er应助科研通管家采纳,获得10
38秒前
在水一方应助科研通管家采纳,获得10
38秒前
科研通AI2S应助科研通管家采纳,获得10
39秒前
彭于晏应助科研通管家采纳,获得10
39秒前
传奇3应助科研通管家采纳,获得10
39秒前
39秒前
39秒前
39秒前
怕黑的乌完成签到,获得积分10
39秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4228329
求助须知:如何正确求助?哪些是违规求助? 3761517
关于积分的说明 11822813
捐赠科研通 3422320
什么是DOI,文献DOI怎么找? 1878085
邀请新用户注册赠送积分活动 931231
科研通“疑难数据库(出版商)”最低求助积分说明 839113