Dense, deep learning-based intracranial aneurysm detection on TOF MRI using two-stage regularized U-Net

医学 动脉瘤 放射科 深度学习 阶段(地层学) 人工智能 核医学 计算机科学 地质学 古生物学
作者
Frédéric Claux,Maxime Baudouin,Clément Bogey,Aymeric Rouchaud
出处
期刊:Journal of Neuroradiology [Elsevier BV]
卷期号:50 (1): 9-15 被引量:35
标识
DOI:10.1016/j.neurad.2022.03.005
摘要

The prevalence of unruptured intracranial aneurysms in the general population is high and aneurysms are usually asymptomatic. Their diagnosis is often fortuitous on MRI and might be difficult and time consuming for the radiologist. The purpose of this study was to develop a deep learning neural network tool for automated segmentation of intracranial arteries and automated detection of intracranial aneurysms from 3D time-of-flight magnetic resonance angiography (TOF-MRA).3D TOF-MRA with aneurysms were retrospectively extracted. All were confirmed with angiography. The data were divided into two sets: a training set of 24 examinations and a test set of 25 examinations. Manual annotations of intracranial blood vessels and aneurysms were performed by neuroradiologists. A double convolutional neuronal network based on the U-Net architecture with regularization was used to increase performance despite a small amount of training data. The performance was evaluated for the test set. Subgroup analyses according to size and location of aneurysms were performed.The average processing time was 15 min. Overall, the sensitivity and the positive predictive value of the proposed algorithm were 78% (21 of 27; 95% CI: 62-94) and 62% (21 of 34; 95%CI: 46-78) respectively, with 0.5 FP/case. Despite gradual improvement in sensitivity regarding aneurysm size, there was no significant difference of sensitivity detection between subgroups of size and location.This developed tool based on a double CNN with regularization trained with small dataset, enables accurate intracranial arteries segmentation as well as effective aneurysm detection on 3D TOF MRA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿托伐他汀完成签到 ,获得积分10
刚刚
BU会发布了新的文献求助10
1秒前
王亚明发布了新的文献求助10
2秒前
cmt完成签到,获得积分10
4秒前
5秒前
东方续完成签到,获得积分10
6秒前
6秒前
斯文灯泡完成签到,获得积分10
7秒前
小马甲应助ru采纳,获得10
7秒前
7秒前
JJy完成签到 ,获得积分10
8秒前
万能图书馆应助达进采纳,获得10
8秒前
8秒前
搜集达人应助sunny采纳,获得10
9秒前
nenenn发布了新的文献求助10
10秒前
XXGG完成签到 ,获得积分10
10秒前
fsznc1完成签到 ,获得积分0
11秒前
多肉丸子发布了新的文献求助10
11秒前
慕青应助Zack采纳,获得10
12秒前
13秒前
卫生纸发布了新的文献求助10
13秒前
标致夜蕾发布了新的文献求助10
13秒前
大气尔蓝完成签到,获得积分10
14秒前
15秒前
16秒前
研友_nVNBVn发布了新的文献求助30
17秒前
17秒前
潘润朗发布了新的文献求助10
18秒前
18秒前
18秒前
呐殇完成签到,获得积分10
19秒前
所所应助科研通管家采纳,获得10
19秒前
我是老大应助科研通管家采纳,获得10
19秒前
yznfly应助科研通管家采纳,获得30
19秒前
ED应助科研通管家采纳,获得10
19秒前
yznfly应助科研通管家采纳,获得30
19秒前
19秒前
无花果应助科研通管家采纳,获得30
19秒前
大个应助科研通管家采纳,获得10
19秒前
CAOHOU应助科研通管家采纳,获得10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Encyclopedia of Mathematical Physics 2nd Edition 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Theories of Human Development 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3923319
求助须知:如何正确求助?哪些是违规求助? 3468212
关于积分的说明 10951032
捐赠科研通 3197224
什么是DOI,文献DOI怎么找? 1766471
邀请新用户注册赠送积分活动 856265
科研通“疑难数据库(出版商)”最低求助积分说明 795378