亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A two-stage hybrid credit risk prediction model based on XGBoost and graph-based deep neural network

计算机科学 信用风险 人工智能 机器学习 人工神经网络 特征工程 图形 信用评分 数据挖掘 财务 深度学习 理论计算机科学 经济
作者
Jiaming Liu,Sicheng Zhang,Haoyue Fan
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:195: 116624-116624 被引量:95
标识
DOI:10.1016/j.eswa.2022.116624
摘要

The credit risk prediction technique is an indispensable financial tool for measuring the default probability of credit applicants. With the rapid development of machine learning and the application of big data, increasingly sophisticated models have been designed to construct effective credit risk prediction models. In this study, we propose a two-stage hybrid model to enhance the prediction performance of credit risk. First, to make full use of the classified information hidden in credit data, we employ XGBoost to linearize and transform the original features into a high-dimensional sparse feature matrix. Second, to effectively process the transformed high-dimensional data and to discover the relationships between the features, a recently proposed graph-based neural network (forgeNet) model, which is good at addressing high-dimensional data, is deployed to predict the credit risk. The real-world credit data of the Lending Club for the period from 2007 to 2016 were collected and partitioned based on the economic cycle to validate the robustness of the proposed model. The experimental results show that feature transformation and feature graph mining are two pragmatic processes for credit risk prediction when analyzing credit data. Furthermore, the proposed model is robust against different economic cycles and achieves the best average prediction results of 87.52%, 93.13% and 85.59% in terms of accuracy, F1-score, and G-mean compared with other benchmarks, including individuals, hybrid models, and ensembles. The average performance of the proposed model rose by 6.14, 7.59 and 6.18 percentage points, respectively, which demonstrates the outperformance of the proposed two-stage model in credit risk prediction applications
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuaner发布了新的文献求助10
1秒前
FairyLeaf完成签到 ,获得积分10
2秒前
4秒前
情怀应助科研通管家采纳,获得30
7秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
8秒前
田様应助22222采纳,获得10
9秒前
22222发布了新的文献求助10
21秒前
ikutovaya完成签到,获得积分10
33秒前
38秒前
22222发布了新的文献求助10
43秒前
45秒前
49秒前
今后应助nito采纳,获得10
49秒前
无奈肾虚发布了新的文献求助10
59秒前
齐家腾发布了新的文献求助30
1分钟前
1分钟前
nito发布了新的文献求助10
1分钟前
二十八画生完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
ding应助Bo采纳,获得10
1分钟前
1分钟前
2分钟前
Bo发布了新的文献求助10
2分钟前
ssr发布了新的文献求助10
2分钟前
2分钟前
英俊的铭应助科研通管家采纳,获得10
2分钟前
Ming应助科研通管家采纳,获得10
2分钟前
Bo完成签到,获得积分10
2分钟前
Lee完成签到,获得积分10
2分钟前
2分钟前
陈冰发布了新的文献求助10
2分钟前
feizao完成签到,获得积分10
2分钟前
丘比特应助陈冰采纳,获得10
3分钟前
nito发布了新的文献求助10
3分钟前
nito完成签到,获得积分10
3分钟前
慕青应助nito采纳,获得10
3分钟前
3分钟前
调皮老头发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772690
求助须知:如何正确求助?哪些是违规求助? 5601217
关于积分的说明 15429935
捐赠科研通 4905602
什么是DOI,文献DOI怎么找? 2639524
邀请新用户注册赠送积分活动 1587405
关于科研通互助平台的介绍 1542337