BPGAN: Brain PET synthesis from MRI using generative adversarial network for multi-modal Alzheimer’s disease diagnosis

计算机科学 相似性(几何) 基本事实 人工智能 正电子发射断层摄影术 神经影像学 深度学习 生成对抗网络 磁共振成像 模式识别(心理学) 核医学 图像(数学) 医学 放射科 精神科
作者
Jin Zhang,Xiaohai He,Linbo Qing,Feng Gao,Bin Wang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:217: 106676-106676 被引量:57
标识
DOI:10.1016/j.cmpb.2022.106676
摘要

Multi-modal medical images, such as magnetic resonance imaging (MRI) and positron emission tomography (PET), have been widely used for the diagnosis of brain disorder diseases like Alzheimer's disease (AD) since they can provide various information. PET scans can detect cellular changes in organs and tissues earlier than MRI. Unlike MRI, PET data is difficult to acquire due to cost, radiation, or other limitations. Moreover, PET data is missing for many subjects in the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. To solve this problem, a 3D end-to-end generative adversarial network (named BPGAN) is proposed to synthesize brain PET from MRI scans, which can be used as a potential data completion scheme for multi-modal medical image research.We propose BPGAN, which learns an end-to-end mapping function to transform the input MRI scans to their underlying PET scans. First, we design a 3D multiple convolution U-Net (MCU) generator architecture to improve the visual quality of synthetic results while preserving the diverse brain structures of different subjects. By further employing a 3D gradient profile (GP) loss and structural similarity index measure (SSIM) loss, the synthetic PET scans have higher-similarity to the ground truth. In this study, we explore alternative data partitioning ways to study their impact on the performance of the proposed method in different medical scenarios.We conduct experiments on a publicly available ADNI database. The proposed BPGAN is evaluated by mean absolute error (MAE), peak-signal-to-noise-ratio (PSNR) and SSIM, superior to other compared models in these quantitative evaluation metrics. Qualitative evaluations also validate the effectiveness of our approach. Additionally, combined with MRI and our synthetic PET scans, the accuracies of multi-class AD diagnosis on dataset-A and dataset-B are 85.00% and 56.47%, which have been improved by about 1% and 1%, respectively, compared to the stand-alone MRI.The experimental results of quantitative measures, qualitative displays, and classification evaluation demonstrate that the synthetic PET images by BPGAN are reasonable and high-quality, which provide complementary information to improve the performance of AD diagnosis. This work provides a valuable reference for multi-modal medical image analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ztt27999完成签到,获得积分10
刚刚
2秒前
JIASHOUSHOU完成签到,获得积分10
2秒前
研友_Lw7OvL发布了新的文献求助30
2秒前
饱满一手完成签到 ,获得积分10
3秒前
FANG发布了新的文献求助10
3秒前
3秒前
Joyi完成签到 ,获得积分20
4秒前
Lucas应助ddli采纳,获得10
4秒前
科研通AI5应助ddli采纳,获得10
4秒前
善学以致用应助ddli采纳,获得10
4秒前
Akim应助ddli采纳,获得10
4秒前
科研通AI5应助ddli采纳,获得10
4秒前
科研通AI5应助ddli采纳,获得10
4秒前
Hello应助ddli采纳,获得10
4秒前
科目三应助ddli采纳,获得10
4秒前
Hello应助ddli采纳,获得10
5秒前
5秒前
bkagyin应助ddli采纳,获得10
5秒前
Bin_Liu发布了新的文献求助10
6秒前
萱萱发布了新的文献求助10
6秒前
6秒前
6秒前
阿苇完成签到 ,获得积分10
8秒前
8秒前
9秒前
9秒前
xxxinging发布了新的文献求助10
10秒前
科研通AI5应助微笑的映波采纳,获得10
10秒前
12秒前
Chem34完成签到,获得积分10
12秒前
研友_ndvWy8发布了新的文献求助10
14秒前
aaaaarfv发布了新的文献求助10
15秒前
15秒前
桑尼号完成签到,获得积分10
15秒前
斯文败类应助Lwssss采纳,获得10
15秒前
15秒前
biubiuu完成签到,获得积分10
16秒前
瞳梦完成签到,获得积分10
19秒前
moyu发布了新的文献求助10
20秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801265
求助须知:如何正确求助?哪些是违规求助? 3346952
关于积分的说明 10331093
捐赠科研通 3063252
什么是DOI,文献DOI怎么找? 1681462
邀请新用户注册赠送积分活动 807600
科研通“疑难数据库(出版商)”最低求助积分说明 763785